
Trusted Passages: Managing Distributed Trust Needs of Emerging Applications
Mustaque Ahamad, Martim Carbone, Greg Eisenhauer, Jiantao Kong, Wenke Lee, Bryan Payne, Karsten

Schwan and Ramesh Viswanath
School of Computer Science

Georgia Institute of Technology
Atlanta, GA 30340

1 Motivation

Distributed systems and applications are becoming so complex that it is difficult for end users to understand
or control (1) where their data will be accessed and stored, and (2) where their processing will be performed.
This is because modern information processing infrastructures routinely cache data, intermediate results
and parameters; they routinely integrate data, mine it, or operate on it on dynamically selected application
servers; and they are now beginning to extend these host-level actions to also make use of underlying platform
elements. At the same time, businesses must use the service architectures and infrastructures provided by
industry, to control costs, to be able to interoperate with their partners, and more generally, to carry out the
distributed IT processes that have now become routine. The following questions arise about the distributed
systems and environments in which applications critical to an enterprise’s operational capabilities are run.
First, to what extent can one trust the open service-based infrastructures companies must use to contain
costs and to gain interoperability with external partners? Second, can open systems like these be used to
construct distributed applications that deliver information critical to an enterprise’s ability to function, in a
timely fashion and with trustworthy results? Third, is it possible to use the cost-effective shared Internet-
based infrastructures for critical information processing and delivery in place of expensive enterprise-specific
or point-to-point solutions.

Unfortunately, the answer to the questions posed above is that today’s security technologies are insufficient
to provide this type of trust for large, distributed applications. In many applications, data is passed between
databases, data processing applications, data format applications, and data serving applications. Moreover,
request parameters and intermediate results are cached in various locations between clients, applications,
and backends. Traditional security technologies, therefore, are unable to effectively monitor all of these
interactions and make autonomous trust decisions for the user. For example, a VPN could secure the data
traveling between the client and the server, but it cannot make guarantees about the processing that happens
within the distributed system ‘behind’ the server. Should the client trust the data produced by the server?
Traditional security solutions, which focus on secure storage and transmission of data, are not adequate when
data is processed and stored at multiple points that change over time. New security solutions are needed to
ensure that all applications that produce and process the data remain trustworthy.

2 Approach

Our approach relies on the notion of trusted passages which provide the framework necessary to address the
problem of securing applications that run on large-scale distributed systems. Specifically, this abstraction
dynamically manages trust for applications that execute on open distributed systems. From the client’s
perspective, any single component in a distributed system can be trusted only if it satisfies certain properties.
These properties can vary based on the client’s needs. Some examples include safety (e.g., correct execution
of requested operations), proper handling of information, and acceptable response times. Likewise, the entire
distributed application can only be trusted if each component that affects the application satisfies these
properties. This last point is critical to understanding trusted passages. Information traveling through the
components of a distributed application creates a virtual passageway. Therefore, the primary challenge is to
ensure that each part of the passage is trusted.

Dynamic trust management starts by continuously measuring the trust level of each component in the
distributed system. We define a platform as trusted if it processes data without any tampering of the data

1

or the processing platform. A trusted passage builds on this to also prevent manipulation of data in transit
or the sending of corrupted data. While this definition, based on monitoring of components, is somewhat
weaker than that of a system that is guaranteed to remain secure at all times, it is more practical for
complex systems and is sufficient for the correct operation of important applications (i.e., to perform the
steps originally programmed into the application without undetected modifications due to malicious attacks).
A trusted passage accounts for all aspects of data processing, storage, and transport within the passage.

The trusted passage framework is composed of several components. A local trust controller monitors its
host’s activities using virtual machine introspection and innovative intrusion detection techniques. Multiple
trust controllers are connected to create a distributed system that can use the local information from each
host to provide dynamic management of trust and to construct trusted passages that meet application needs.
New system-level abstractions support efficient trust controller operation, imposing only small overheads on
application and system execution.

2.1 Using Trusted Passages – An Example

Government and industry are increasingly relying on complex distributed systems to form their core com-
puting infrastructure. For example, companies like Google, Amazon, and eBay use tens of thousands of
computers to support Web service applications. The Federal Bureau of Investigation, along with various
state agencies, maintains a distributed database for crime-related information called the National Crime
Information Center. Delta Air Lines, one of our research partners, maintains a critical distributed system
responsible for processing flight and passenger information. Each of these systems has unique requirements
with regards to uptime, performance, storage, bandwidth, etc. However, they all utilize complex methods for
processing and sharing data: (1) these demanding, distributed applications are considerably more complex
than the traditional client-server model; and (2) data is passed throughout the system in complex paths, and
it is stored, processed, and forwarded at many points between its source and destination.

To illustrate how trusted passages address the emerging security issues in these applications, consider
the operational information system (OIS) used by Delta Air Lines. As shown in Figure 1, this massively
distributed system combines transactional processing, with push-based event delivery and manipulation,
with client-server actions at end points. Its purpose is to continually provide the company with up-to-
date information about all of its flight operations, including data events about passenger boarding, flight
arrivals and departures, flight positions, and baggage. Event generation, transport, processing, and output
use a wide-area distributed network of end systems, servers, and networking equipment that connects them.

CRMScheduling

.
Crew

. . .
Flight
Data

Processing

FAA
Record
Keeping

Internal Data Stores

FAA Flight Info

Catering Partners

Maintenance Partners

WorldSpan Flight Reservations

Outsourced Revenue Pipeline
Tier 2 Webservices Farm

Delta Operational
Information System

Local trust Boundaries

Internal Communications

Figure 1: Delta Air Lines OIS.

Business logic applied to data creates
meaningful information and generates
the additional events used for tasks
ranging from the update of airport
terminal displays to notifications sent
to caterers of passengers’ food prefer-
ences. This logic is run on multi-
ple, high end server systems that con-
tinuously process input streams com-
prised of FAA flight position updates
and Delta-specific flight information.
These server systems form an Internal
Event System (IES) that interacts with
clients, both by generating continuously
derived system-state updates and/or by
responding to explicit external requests
for information. The large number of

clients, the complexity of the business logic being applied and its working set size of hundreds of gigabytes,
and a 24/7 uptime requirement dictate that business logic is implemented by multiple subsystems, some of
which may be replicated across multiple nodes (and locations, for disaster recovery). Requirements on a

2

IDD

Meta
Info

Trust
Controller

Distr.
Trust

IDD

Meta
Info

Trust
Controller

IDD

Meta
Info

Trust
Controller

Hypervisor

Hypervisor

Hypervisor

App

Mware

OS

App

App

Mware

OS

App

App

Mware

OS

App

OS

OS

OS

Mware

Trust Bus

Mware

Trust Bus

Mware

Trust Bus

Figure 2: Trusted Passsages Architecture.

critical system like this include high performance, high reliability and availability, and the ability to maintain
constant service levels (as perceived by system clients), even under ‘unusual’ operating conditions.

The Delta OIS system exhibits many of the architectural features that make these distributed applications
challenging to secure. Trusted passages are designed to provide security to an architecture with these key
features:

• Distributed Data Processing. Data is generated, processed, and inspected at multiple locations
between its origination and destination, across machines internal to a company and with a variety of
external partners who are in different trust domains.

• Distributed Data Storage. Data is stored at multiple locations. This can be for redundancy, locality,
or other architectural reasons.

• Architectural Redundancy. Critical architectural components are replicated in order to provide the
reliability and uptime that these applications demand.

Together, these features describe the framework of a complex distributed system. Trusted passages go beyond
existing security techniques to actively ensure trustworthy operation of these complex systems.

3 Architectural Overview

Figure 2 shows a trusted passage view based on different subsystems and machines jointly providing services
to external clients. The presence of trust controllers running on all of the machines used by the application
processes, with a vertical line between trust controllers and application processes indicating platform-enforced
isolation between them, allows secure monitoring of the application processes. In addition to the the solid lines
indicating application-level communications, dotted lines indicate communications between cooperating trust
controllers. Not explicitly shown in the figure is how trust controllers detect problems and make decisions
about what machines and software systems to trust. Here, we simply note that such decisions will be based
on (1) localized trust – per platform monitoring of applications’ behavior, including their communication
actions, and (2) distributed trust – information exchanged between multiple trust controllers. Trust decisions
are made for each application, and the trust controllers to which an application has subscribed will endeavour
to maintain some viable trusted passage that enables it to carry out its distributed processing tasks.

3

In our ongoing middleware research [2], we use a combination of active and passive standby nodes to attain
reliable operation in the presence of nodes that can no longer be trusted. In the Agile Store project [4], we
combine replication with secret sharing techniques to deal with dynamically detected attacks. In research
conducted in peer-to-peer settings, we have used a combination of timeouts and result comparison to detect
compromised subsystems, then react with runtime request re-routing and re-replication [5]. We envision a
strategy where a trusted passage is able to create a new, uncompromised domain on a machine used by
the application, and where the application uses its own methods for re-joining the computations and data
exchanges being performed. Conversely, trusted passages will attempt to detect compromised subsystems and
machines under attack, but application specific handling may be necessary to deal with detected problems.

3.1 Localized Trust

Trusted Passages demand that each participating platform actively monitors and manages its activities to
ensure that certain trust properties are met. At a local level, this is handled by the trust controller. The
trust controller has three primary responsibilities:

• Monitor the local host, collect this information, and make a local trust decision.

• Cooperate with remote hosts to support dynamic, distributed trust management.

• Interact with local host applications, to give applications access to trust information and therefore, the
ability to deal with trust gain or loss.

In order to properly perform these tasks, it is critical that the trust controller be inherently trusted. This
trust is provided using virtual machines to form a distinct boundary between the trust controller and the
monitored platform. Leveraging existing work, the proposed architecture uses the Xen hypervisor [1] as a
virtualization platform. The trust controller can execute in a privileged domain, and the monitored platform
can execute in an unprivileged or user domain. This separation isolates the trust controller from traditional
attacks. In addition to the isolation properties, each trust controller will operate in a protected environment
complete with a hardened operating system and an intrusion detection system. Combining this with the
isolation provided by the Xen hypervisor, the trust controller is able to operate at a significantly higher level
of assurance than the monitored operating system. Finally, in order to ensure trustworthy communication
between trust controllers, information must be securely transmitted. We plan to leverage existing work here
and use techniques seen in virtual private networks (VPNs) such as encryption, authentication, and integrity
checking using certificates.

Each trust controller will be responsible for monitoring any other domains running on the same hypervisor.
The process of monitoring between virtual machines is known as virtual machine introspection (VMI). VMI
allows one domain to monitor the current state of other domains including all physical memory, the CPU,
device I/O, and any other data that passes between the hypervisor and domain. In order to facilitate
interactions such as monitoring and response, we defined the XenAccess Library to provide the trust controller
with a high-level view of each domain. This higher level abstraction will facilitate rapid development and
exploration of new ways to leverage the powerful technique of virtual machine introspection.

Using the XenAccess Library, we are exploring innovative ways to monitor a domain. First, trust con-
trollers will monitor program execution and compare the results with execution of the same request on other
nodes. This technique is related to the behavior distance work by Gao et al. [3]. However, in contrast to
this work, we will explore the use of input beyond system calls. The XenAccess Library will allow behavior
distances to be computed using anything from the raw memory in a process image to user-level API calls.
We will research different distance metrics to understand which input provides the most useful measurement
for trusted passages.

In addition to the behavior distance work, we plan to use the XenAccess Library to provide input for
anomaly detection of local program executions. As described above, the XenAccess Library provides an
opportunity to experiment with new types of system information as well as new abstractions. Our work
starts with a traditional anomaly detection approach, and then determines which new data sources (e.g.,

4

resource utilization by the application) to add into the training set. The end result will provide an additional
tool that will detect deviation from a pre-defined normal behavior.

Combining these two techniques, the trust controller will have a powerful view into the state of the
monitored domain. If the anomaly detector indicates a problem, the trust level of that domain and its
host can immediately go down. However, if the domain passes the anomaly detection test, then the behavior
distance approach will provide a more fine-grained view into its operations. These two approaches complement
each other in such a way that it would be much more difficult for an attacker to avoid detection while still
carrying out a malicious task.

3.1.1 Distributed Trust

We require that multiple trust controllers executing at different machines coordinate and compare their
results. A compromised domain’s observations are likely to differ from others and based on such comparisons,
a trust value is associated with the domain. We plan to use models where trust values, that are meaningful
at the application level, dynamically change in the range from 0 and 1 based on observed behavior of nodes.
These values are used to represent the level of trust a controller associates with a domain and the platform
where it runs. Higher trust values indicate a more trusted platform that meets the needs of a trusted passage
and lower values indicate that the resources at the platform cannot be trusted to support the passage. A
trust value degrades rapidly when the trust controller suspects that its observations indicate anomalous
behavior or when they differ from observations of other controllers. We want the trust value of a platform
that effectively supports a trusted passage to gradually increase and get close to 1 with time. Notice that
we establish a distributed network of trusted hypervisors and controllers, and the trust value of a platform is
used to determine if the platform can meet the safety and performance needs of the trusted passage. In this
sense, our network of trust controllers acts as a distributed trust management infrastructure for a passage.
Our research is exploring models for dynamically evolving trust values based on trust controller observations.
We are also investigating how to effectively utilize dynamically computed trust values of multiple platforms
to make resource management decisions that ensure that a trusted passage can be supported effectively.

4 Conclusions

The trusted passage project is addressing multiple challenges to effectively meet trust needs of applications.
The primary thrust is on building trust controllers that are run on a distributed set of platforms to manage
the resources that support a trusted passage. To achieve this goal, we monitor platform execution using
virtual machine introspection and other performance metrics relevant to the trusted passage. The trust
controllers at different nodes share their local information and coordinate their actions to ensure that the
entire passage fulfills our definition of trust. Trust controllers enable us to provide the rich distributed
processing and communication abstraction that we call a trusted passage. We plan to demonstrate the
usefulness of the trusted passage abstraction and our approach for implementing them by experimenting
with lab-scale versions of applications that deal with distributed information processing and dissemination.

References

[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt, and Andrew Warfield. Xen and the Art of Virtualization. In Proc. of 18th Symposium of Operating
Systems Principles (SOSP-18), Bolton Landing, NY, 2003.

[2] Zongtang Cai, Vibhore Kumar, Brian F. Cooper, Greg Eisenhauer, Karsten Schwan, and Rob Strom.
Utility-driven fault-tolerance in enterprise-scale information flows. Middleware, 2006.

[3] Debin Gao, Michael K. Reiter, and Dawn Xiaodong Song. Behavioral distance for intrusion detection. In
RAID, pages 63–81, 2005.

5

[4] Lei Kong, Deepak J. Manohar, Arun Subbiah, Michael Sun, Mustaque Ahamad, and Douglas M. Blough.
Agile store: Experience with quorum-based data replication techniques for adaptive byzantine fault tol-
erance. In Proceedings of the International Symposium on Reliable Distributed Systems (SRDS), 2005.

[5] Ramesh Viswanath, Mustaque Ahamad, and Karsten Schwan. Harnessing non-dedicated wide-area clus-
ters for on-demand computing. In Proceedings of IEEE International Conference on Cluster Computing
(Cluster 2005), 2005.

6

