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Abstract 

With the relentless growth in trusted systems software 
and governmental mandates for evaluation, automated 
support for visualizing and navigating software artifacts 
is no longer a luxury. Much of this growth is in post-
deployment and re-evaluations take considerable effort 
to complete. For those involved in evaluating software 
security, the job of examining their Target of Evaluation 
(TOE) for potential security vulnerabilities is daunting 
and often protracted. Making sense of the relationships 
between components, the supporting documentation, and 
the testing can stretch the limits of human capacities. 
Even seemingly innocuous software changes to the 
system can result in considerable effort establishing the 
extent of vulnerabilities that could be introduced. This 
paper describes research for using visualization 
technology for supporting trusted system evaluation. 
Recognizing that the more formal the software artifact 
representation form, we exploit more opportunities to 
use automation in the evaluation.  

1. Introduction 
In an era of heightened security concern, trusted 
software systems are increasingly growing, evolving, 
and sustaining changes. As changes are introduced, the 
process of assuring that security vulnerabilities are not 
introduced becomes increasingly labor intensive and 
error prone [1]. As society increasingly depends on 
software, the size and complexity of software systems 
continues to grow making them more difficult to 
understand and evolve. This trend applies equally to 
trusted systems. Manifold dependencies between critical 
elements of trusted software now drive the architectures 
and increasingly sway the overall system architecture 
[2]. When changes are introduced, it is often difficult to 
determine the resulting ramifications. Will the change 
introduce security vulnerabilities? Will the information 
assurance be compromised? To what degree can we be 
confident that the system will operate unhindered by 
outside attacks? These can be answered only if there are 
mechanisms to evaluate these aspects of the system. 

Considerable effort has been expended developing a 
software security evaluation process and associated 
criteria [3, 4]. With the Common Criteria Security 
Evaluation (CCSE) [5-7] [ISO/IEC Standard 15408] 

requirements mandated as of July 2002, the backlog of 
software to comply is immense and requires both 
process and automated support. This regulation created a 
sudden demand for understanding software and security 
impacts [1]. Evaluating software for security issues 
entails understanding common criteria related security 
requirements, their design dependencies in the systems 
under evaluation, and the degree to which their design, 
implementation, and testing processes and artifacts 
convey confidence that the security elements have been 
realized appropriately. 

The CCSE process is time consuming and labor-
intensive. It involves evaluators wading through large 
bodies of system and software documentation to 
determine if there is enough confidence to employ a 
software product in a secure environment. For a typical 
software system, several weeks of effort are expended to 
produce an evaluation that leads to a validation report. 
The evaluation is largely based on an evaluator’s opinion 
of how well the system meets the security criteria.  

While formal specifications of security requirements 
coupled with effective traceability techniques can 
provide leverage in the subsequent evaluation of trusted 
systems [8], the use of visualization technology can offer 
both and extension and confirmation of these 
approaches. Moreover, the use of visualization 
technology can help with the overwhelming amount of 
information and relationships between information that 
goes with the various software system artifacts. 

The development and maintenance life cycles entail 
traceability relationship dependencies that extend from 
early requirements to architecture, design, 
implementation, and all stages of testing. Source code 
has data and control dependencies that form program 
dependency graphs employed in software analysis. 
Managing the evolution of these systems still entails 
configuration and version dependencies. And now with 
the growth of packaged applications and component-
based development, interoperability between 
components must also be incorporated into the 
dependency network used to understand software. All of 
these contribute to a security evaluator’s understanding 
of the software and its respective security aspects. 

While understanding can be difficult from a 
development perspective, it is even more challenging 
from the maintenance or evolution perspective. 



  

Constraints of an existing system with all of its software 
artifacts (or lack there of) can add significant complexity 
to the software change situation [9].  

While software requirements, architecture, and design 
methods provide effective means for dealing with some 
of this challenge, the software community has found it 
necessary to employ software impact analysis techniques 
such as traceability and source code analysis to 
understand and account for relationships between 
software objects [10-12].  

In this research we examine criteria for software 
security, effective means of organizing the software 
system information for evaluation, and visualization 
techniques for developing insights that lead to more 
effective security evaluations. Since software changes 
and evaluations are subject to subsequent updates, we 
pursue how visualization can help support tolerating 
changes while preserving security. 

1.1. Understanding Dependencies 
Software systems must be understandable in order to 
create and change them. However, short of developing 
systems with formal methods and specifications, most 
software development methods have significant gaps in 
dependency information that, when absent for software 
changes or security evaluations, leads to fragile software 
products or information assurance vulnerabilities. A 
situation that occurs time and time again is where a 
design decision is made without visibility into the 
potential impacts. For example, an exception handling 
approach for buffers is considered from the perspective 
of programming efficiency and left to the system to 
handle when overflow occurs. From a software change 
perspective, this might be entangled with many system 
services, some of which the ripple effect may not be 
deterministic. From a security perspective, this may (and 
has) turned out to be a significant security vulnerability 
where Internet intruders obtain access to system level 
services and reek havoc on the system. Had the software 
engineers had visibility into the issue, a different tactic 
might have been employed or at least some safety 
mechanism may have been implemented.  

While this example is one that most software 
engineers face, the real issue rests in the limited 
visibility that today’s technology provides for relevant 
software dependencies. Analogous to the situation when 
source code analysis tools were introduced, we now face 
considerable complexities that dependency analysis can 
alleviate. With the increased size and complexity, new 
artifacts have been introduced into the software product 
bringing more complexities still. The program 
dependency graphs (PDG) that were then and are now 
used to represent control and data flow dependencies 
must be extended to resolve this situation. The semantics 
of the objects and the relationships between them must 
be extended beyond programming idioms and include 
other specifications like requirements and design. 

Considerable traction can be achieved in developing 
an essential dependency model that encompasses 
requirements, architectural, and detailed design 
relationships and connects them with implementation 
dependencies. This would enable software engineers and 
software security evaluators to reason effectively about 
software change and security. Since demonstrating this 
for all software domains would dilute the effort, we 
focused on the software security area, building upon 
successful research work accomplished for the 
Commonwealth Information Security Center [13].  

1.2. Common Criteria Security Evaluation 
In the CCSE, the product to be evaluated is called the 
Target of Evaluation (TOE) and the organization that 
requests the evaluation is called the Sponsor. The 
certification laboratory is the Evaluator. The TOE can be 
evaluated to various levels of assurance called the 
Evaluation Assurance Levels (EAL). The outcome of 
evaluation is an Evaluation Technical Report (ETR), 
which is used to generate and publish the Validation 
Report (VR) by a Validator. The TOE is evaluated 
according to security requirements conveyed in the 
Security Target (ST). An application independent set of 
high-level security requirements for families of products 
is called a Protection Profile (PP). 

CCSEs essentially checks for completeness and 
correctness of a system’s security features. To check for 
correctness, first the evaluator needs to navigate through 
the labyrinth of software artifacts. The navigation 
through all software artifacts (e.g., requirements and 
design documents, code, tests, and related documents) 
can be arduous and time consuming. Further, the manual 
process does not provide the vendor, who is preparing 
the TOE, any mechanism to show the “gaps” or missing 
artifacts in the TOE document. Hence the vendor must 
wait for evaluator to go through the artifacts and inquires 
for missing or additional information.  

2. Formalism in Security Assurance 
The Evaluation Assurance Level (EAL) determines the 
level of formalism or rigor required for a given 
application (EAL1 is most basic and cheapest, while 
EAL7 is the most rigorous and expensive).  
EAL1– Functionally Tested: Basic assurance of security 
by analyzing functional specifications and guidance.  
EAL2– Structurally Tested: Moderate level of assurance 
by EAL1 plus high-level design and independent testing 
of the security functions for vulnerability assessment. 
EAL3– Methodically Tested and Checked: Provides 
moderate level of assurance by including EAL2 plus 
evidence of sound development practices. 
EAL4– Methodically Designed, Tested and Reviewed: 
Moderate/high level of assurance - highest level 
economically feasible to retrofit an existing product line. 



  

EAL5– Semiformally Designed and Tested: Provides 
security engineering based upon rigorous commercial 
development practices to ensure resistance to attackers.  
EAL6– Semiformally Verified Design and Tested: High 
assurance through security engineering techniques in a 
rigorous development environment to reduce risks.  
EAL7– Formally Verified Design and Tested: Highest 
assurance level - requires formal design verification. 

These indicate a trade-off between the rigor to ensure 
low security risks and the cost to accomplish it. That is, 
the investment to ensure security should align with the 
benefit gained from the rigor. Note that levels 5-7 
specify some range of formal representation – the more 
formal the representation, the higher the odds of 
identifying security vulnerabilities. A corollary to this is 
that with more formal representations, the opportunity 
increases to use automated verification and evaluation 
technologies such as theorem provers, analysis and 
modeling, and visualization tools – key research driver.  

3. Analytics and Visualization 
Analytic solutions offer a means of examining indicators 
that lead to discovery. The level of confidence goes up 
when we produce a mathematical equation or proof that 
supports our assertion or negation. Formulas, however, 
are an intermediate form of what we believe is true – we 
often “see” the answer before hand. This is the concept 
behind “visual thinking” [14]. Kriz outlines this idea in a 
number of accounts ranging from Albert Einstein to J. 
Willard Gibbs. Gibbs, a pioneer of thermal dynamics, in 
his ground breaking work [15], first analytically 
formulates the equations that form the basis for the 

mathematics used to describe the first and second laws 
of thermal dynamics today. Concluding his work, Gibbs 
dispenses with the analytics in favor of the visual form 
as he only used the analytics as an intermediation to the 
concepts he was trying to communicate. Note that at the 
time of writing, 1873, visual depictions did not exist as 
they do today. It makes one wonder what else Gibbs 
would have discovered if he had today’s tools.  

4. Security Impact Analysis Virtual 
Environment (SIAVE) 

Evaluating trusted software systems often entails large 
volumes of documentation containing related concepts 
that are not organized as such. There are frequently gaps, 
disconnects, and ambiguities. In our research we found 
that most of the evaluator’s effort was expended on 
organizing and wading through all of the material to gain 
an acceptable level of understanding. To expedite 
CCSEs, we prototyped the SAIVE to automate many of 
the CCSE process’s laborious tasks while retaining the 
creative part for humans. SIAVE partially automates 
tasks associated with both the vendor and evaluator. We 
had three key goals: 1) Improve efficiency of preparation 
process; 2) Improve evaluation cycle time through better 
preparation and evaluation process; and 3) Improve 
evaluation effectiveness through better visibility. 

Figure 1 depicts the workflow for the SIAVE. Once 
the ST/PP report is generated, the vendor opens the 
SIAVE template document and runs a GenerateTemplate 
macro which automatically generates the set of CC and 
requirement elements required for successful evaluation. 

 

 
Figure 1: Security Impact Analysis Visualization 



  

The template is designed to help the vendor in 
revising the TOE to confirm to CC evaluation standards. 
The SIAVE template lists the CC elements, connected 
requirements, architecture, design, code and other 
software artifacts that need to be filled in for a successful 
CCSE. The vendor then pours into the template the 
appropriate TOE information which includes image files 
also. The “fill in process” enables the vendor to 
understand gaps in the system that needs to be addressed 
prior to submitting the system for evaluation. Once the 
template is filled in, the exportdata macro is executed by 
the vendor to convert the document into a series of SQL 
statements and stores in a SQLX document. The images 
in the document are saved as separate files into the 
directory where the document exists. The SQLX 
document is then executed using a custom built 
application called the DB Input Driver. This application 
does error and document structure checking before 
storing the contents of the document in the database. 

The evaluator by means of the 3D environment then 
views the contents stored in the database. The 3D 
environment (two other versions were developed in 
phase one) is the enabler that helps the evaluator to 
check for completeness of security aspects (the first view 
shows the important components and how they are 
linked) and to check for correctness (helps to navigate 
through the artifacts faster). The environment allows the 
evaluator to view the whole system, and then explore 
parts of the system more deeply. The immersion 
mechanism allows the evaluator to select an object of 
interest, read about its details and even get immersed in 
that object – become the object of interest and view the 
system from that object’s perspective.  

5. Conclusions 
This research takes the two proven areas of impact 

analysis and virtual environments, and applies them to a 
relevant and growing area of trusted system evaluation. 
We produced a model of dependency relationships, a 
basic prototype environment using key impact analysis 
identification techniques (transitive closure, slicing, and 
semantic inference) and incorporating the initial 3D 
visualization interface with improved navigational 
instruments for security evaluators.  

The SIAVE uses two key approaches for the 
preparation and evaluation process: templates to 
facilitate ingestion of the TOE and, immersion 
technology to assist in navigation and visual analytics. 

To improve efficiency of the preparation process, we 
reduced time in creating and revising TOE by providing 
standard templates into which vendor can “pour in” 
information about the system. We provide automated 
customization of the template for a specific TOE and 
EAL. We reduced effort and time spent in vendor-
evaluator interaction cycles – the template served as a 
checklist, giving the vendor an initial indicator if the 
system might pass the certification. 

To improve evaluation cycle time through better 
preparation and evaluation process, we reduced the 
conceptual distance between the various artifact 
representations and the standardized format used in the 
SIAVE system by automated generation and partial 
customization of the template. We reduced effort and 
time by identifying failing evaluations early via the 
aforementioned checklist. The map created for 
navigation has a great feature of providing an initial 
analysis (if the map is not complete enough for 
navigation, it is probably an indication of likely failure 
and a pruning opportunity for an overburdened 
evaluation process). 
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