

Tolerating Change in a Secure Environment: A Visual Perspective

Shawn A. Bohner, Denis Gracanin, and Riham Hassan
Virginia Tech, Dept. of Computer Science, Falls Church VA 22043

sbohner@vt.edu, gracanin, rhabdel@vt.edu,

Abstract

With the relentless growth in trusted systems software
and governmental mandates for evaluation, automated
support for visualizing and navigating software artifacts
is no longer a luxury. Much of this growth is in post-
deployment and re-evaluations take considerable effort
to complete. For those involved in evaluating software
security, the job of examining their Target of Evaluation
(TOE) for potential security vulnerabilities is daunting
and often protracted. Making sense of the relationships
between components, the supporting documentation, and
the testing can stretch the limits of human capacities.
Even seemingly innocuous software changes to the
system can result in considerable effort establishing the
extent of vulnerabilities that could be introduced. This
paper describes research for using visualization
technology for supporting trusted system evaluation.
Recognizing that the more formal the software artifact
representation form, we exploit more opportunities to
use automation in the evaluation.

1. Introduction
In an era of heightened security concern, trusted
software systems are increasingly growing, evolving,
and sustaining changes. As changes are introduced, the
process of assuring that security vulnerabilities are not
introduced becomes increasingly labor intensive and
error prone [1]. As society increasingly depends on
software, the size and complexity of software systems
continues to grow making them more difficult to
understand and evolve. This trend applies equally to
trusted systems. Manifold dependencies between critical
elements of trusted software now drive the architectures
and increasingly sway the overall system architecture
[2]. When changes are introduced, it is often difficult to
determine the resulting ramifications. Will the change
introduce security vulnerabilities? Will the information
assurance be compromised? To what degree can we be
confident that the system will operate unhindered by
outside attacks? These can be answered only if there are
mechanisms to evaluate these aspects of the system.

Considerable effort has been expended developing a
software security evaluation process and associated
criteria [3, 4]. With the Common Criteria Security
Evaluation (CCSE) [5-7] [ISO/IEC Standard 15408]

requirements mandated as of July 2002, the backlog of
software to comply is immense and requires both
process and automated support. This regulation created a
sudden demand for understanding software and security
impacts [1]. Evaluating software for security issues
entails understanding common criteria related security
requirements, their design dependencies in the systems
under evaluation, and the degree to which their design,
implementation, and testing processes and artifacts
convey confidence that the security elements have been
realized appropriately.

The CCSE process is time consuming and labor-
intensive. It involves evaluators wading through large
bodies of system and software documentation to
determine if there is enough confidence to employ a
software product in a secure environment. For a typical
software system, several weeks of effort are expended to
produce an evaluation that leads to a validation report.
The evaluation is largely based on an evaluator’s opinion
of how well the system meets the security criteria.

While formal specifications of security requirements
coupled with effective traceability techniques can
provide leverage in the subsequent evaluation of trusted
systems [8], the use of visualization technology can offer
both and extension and confirmation of these
approaches. Moreover, the use of visualization
technology can help with the overwhelming amount of
information and relationships between information that
goes with the various software system artifacts.

The development and maintenance life cycles entail
traceability relationship dependencies that extend from
early requirements to architecture, design,
implementation, and all stages of testing. Source code
has data and control dependencies that form program
dependency graphs employed in software analysis.
Managing the evolution of these systems still entails
configuration and version dependencies. And now with
the growth of packaged applications and component-
based development, interoperability between
components must also be incorporated into the
dependency network used to understand software. All of
these contribute to a security evaluator’s understanding
of the software and its respective security aspects.

While understanding can be difficult from a
development perspective, it is even more challenging
from the maintenance or evolution perspective.

Constraints of an existing system with all of its software
artifacts (or lack there of) can add significant complexity
to the software change situation [9].

While software requirements, architecture, and design
methods provide effective means for dealing with some
of this challenge, the software community has found it
necessary to employ software impact analysis techniques
such as traceability and source code analysis to
understand and account for relationships between
software objects [10-12].

In this research we examine criteria for software
security, effective means of organizing the software
system information for evaluation, and visualization
techniques for developing insights that lead to more
effective security evaluations. Since software changes
and evaluations are subject to subsequent updates, we
pursue how visualization can help support tolerating
changes while preserving security.

1.1. Understanding Dependencies
Software systems must be understandable in order to
create and change them. However, short of developing
systems with formal methods and specifications, most
software development methods have significant gaps in
dependency information that, when absent for software
changes or security evaluations, leads to fragile software
products or information assurance vulnerabilities. A
situation that occurs time and time again is where a
design decision is made without visibility into the
potential impacts. For example, an exception handling
approach for buffers is considered from the perspective
of programming efficiency and left to the system to
handle when overflow occurs. From a software change
perspective, this might be entangled with many system
services, some of which the ripple effect may not be
deterministic. From a security perspective, this may (and
has) turned out to be a significant security vulnerability
where Internet intruders obtain access to system level
services and reek havoc on the system. Had the software
engineers had visibility into the issue, a different tactic
might have been employed or at least some safety
mechanism may have been implemented.

While this example is one that most software
engineers face, the real issue rests in the limited
visibility that today’s technology provides for relevant
software dependencies. Analogous to the situation when
source code analysis tools were introduced, we now face
considerable complexities that dependency analysis can
alleviate. With the increased size and complexity, new
artifacts have been introduced into the software product
bringing more complexities still. The program
dependency graphs (PDG) that were then and are now
used to represent control and data flow dependencies
must be extended to resolve this situation. The semantics
of the objects and the relationships between them must
be extended beyond programming idioms and include
other specifications like requirements and design.

Considerable traction can be achieved in developing
an essential dependency model that encompasses
requirements, architectural, and detailed design
relationships and connects them with implementation
dependencies. This would enable software engineers and
software security evaluators to reason effectively about
software change and security. Since demonstrating this
for all software domains would dilute the effort, we
focused on the software security area, building upon
successful research work accomplished for the
Commonwealth Information Security Center [13].

1.2. Common Criteria Security Evaluation
In the CCSE, the product to be evaluated is called the
Target of Evaluation (TOE) and the organization that
requests the evaluation is called the Sponsor. The
certification laboratory is the Evaluator. The TOE can be
evaluated to various levels of assurance called the
Evaluation Assurance Levels (EAL). The outcome of
evaluation is an Evaluation Technical Report (ETR),
which is used to generate and publish the Validation
Report (VR) by a Validator. The TOE is evaluated
according to security requirements conveyed in the
Security Target (ST). An application independent set of
high-level security requirements for families of products
is called a Protection Profile (PP).

CCSEs essentially checks for completeness and
correctness of a system’s security features. To check for
correctness, first the evaluator needs to navigate through
the labyrinth of software artifacts. The navigation
through all software artifacts (e.g., requirements and
design documents, code, tests, and related documents)
can be arduous and time consuming. Further, the manual
process does not provide the vendor, who is preparing
the TOE, any mechanism to show the “gaps” or missing
artifacts in the TOE document. Hence the vendor must
wait for evaluator to go through the artifacts and inquires
for missing or additional information.

2. Formalism in Security Assurance
The Evaluation Assurance Level (EAL) determines the
level of formalism or rigor required for a given
application (EAL1 is most basic and cheapest, while
EAL7 is the most rigorous and expensive).
EAL1– Functionally Tested: Basic assurance of security
by analyzing functional specifications and guidance.
EAL2– Structurally Tested: Moderate level of assurance
by EAL1 plus high-level design and independent testing
of the security functions for vulnerability assessment.
EAL3– Methodically Tested and Checked: Provides
moderate level of assurance by including EAL2 plus
evidence of sound development practices.
EAL4– Methodically Designed, Tested and Reviewed:
Moderate/high level of assurance - highest level
economically feasible to retrofit an existing product line.

EAL5– Semiformally Designed and Tested: Provides
security engineering based upon rigorous commercial
development practices to ensure resistance to attackers.
EAL6– Semiformally Verified Design and Tested: High
assurance through security engineering techniques in a
rigorous development environment to reduce risks.
EAL7– Formally Verified Design and Tested: Highest
assurance level - requires formal design verification.

These indicate a trade-off between the rigor to ensure
low security risks and the cost to accomplish it. That is,
the investment to ensure security should align with the
benefit gained from the rigor. Note that levels 5-7
specify some range of formal representation – the more
formal the representation, the higher the odds of
identifying security vulnerabilities. A corollary to this is
that with more formal representations, the opportunity
increases to use automated verification and evaluation
technologies such as theorem provers, analysis and
modeling, and visualization tools – key research driver.

3. Analytics and Visualization
Analytic solutions offer a means of examining indicators
that lead to discovery. The level of confidence goes up
when we produce a mathematical equation or proof that
supports our assertion or negation. Formulas, however,
are an intermediate form of what we believe is true – we
often “see” the answer before hand. This is the concept
behind “visual thinking” [14]. Kriz outlines this idea in a
number of accounts ranging from Albert Einstein to J.
Willard Gibbs. Gibbs, a pioneer of thermal dynamics, in
his ground breaking work [15], first analytically
formulates the equations that form the basis for the

mathematics used to describe the first and second laws
of thermal dynamics today. Concluding his work, Gibbs
dispenses with the analytics in favor of the visual form
as he only used the analytics as an intermediation to the
concepts he was trying to communicate. Note that at the
time of writing, 1873, visual depictions did not exist as
they do today. It makes one wonder what else Gibbs
would have discovered if he had today’s tools.

4. Security Impact Analysis Virtual
Environment (SIAVE)

Evaluating trusted software systems often entails large
volumes of documentation containing related concepts
that are not organized as such. There are frequently gaps,
disconnects, and ambiguities. In our research we found
that most of the evaluator’s effort was expended on
organizing and wading through all of the material to gain
an acceptable level of understanding. To expedite
CCSEs, we prototyped the SAIVE to automate many of
the CCSE process’s laborious tasks while retaining the
creative part for humans. SIAVE partially automates
tasks associated with both the vendor and evaluator. We
had three key goals: 1) Improve efficiency of preparation
process; 2) Improve evaluation cycle time through better
preparation and evaluation process; and 3) Improve
evaluation effectiveness through better visibility.

Figure 1 depicts the workflow for the SIAVE. Once
the ST/PP report is generated, the vendor opens the
SIAVE template document and runs a GenerateTemplate
macro which automatically generates the set of CC and
requirement elements required for successful evaluation.

Figure 1: Security Impact Analysis Visualization

The template is designed to help the vendor in
revising the TOE to confirm to CC evaluation standards.
The SIAVE template lists the CC elements, connected
requirements, architecture, design, code and other
software artifacts that need to be filled in for a successful
CCSE. The vendor then pours into the template the
appropriate TOE information which includes image files
also. The “fill in process” enables the vendor to
understand gaps in the system that needs to be addressed
prior to submitting the system for evaluation. Once the
template is filled in, the exportdata macro is executed by
the vendor to convert the document into a series of SQL
statements and stores in a SQLX document. The images
in the document are saved as separate files into the
directory where the document exists. The SQLX
document is then executed using a custom built
application called the DB Input Driver. This application
does error and document structure checking before
storing the contents of the document in the database.

The evaluator by means of the 3D environment then
views the contents stored in the database. The 3D
environment (two other versions were developed in
phase one) is the enabler that helps the evaluator to
check for completeness of security aspects (the first view
shows the important components and how they are
linked) and to check for correctness (helps to navigate
through the artifacts faster). The environment allows the
evaluator to view the whole system, and then explore
parts of the system more deeply. The immersion
mechanism allows the evaluator to select an object of
interest, read about its details and even get immersed in
that object – become the object of interest and view the
system from that object’s perspective.

5. Conclusions
This research takes the two proven areas of impact

analysis and virtual environments, and applies them to a
relevant and growing area of trusted system evaluation.
We produced a model of dependency relationships, a
basic prototype environment using key impact analysis
identification techniques (transitive closure, slicing, and
semantic inference) and incorporating the initial 3D
visualization interface with improved navigational
instruments for security evaluators.

The SIAVE uses two key approaches for the
preparation and evaluation process: templates to
facilitate ingestion of the TOE and, immersion
technology to assist in navigation and visual analytics.

To improve efficiency of the preparation process, we
reduced time in creating and revising TOE by providing
standard templates into which vendor can “pour in”
information about the system. We provide automated
customization of the template for a specific TOE and
EAL. We reduced effort and time spent in vendor-
evaluator interaction cycles – the template served as a
checklist, giving the vendor an initial indicator if the
system might pass the certification.

To improve evaluation cycle time through better
preparation and evaluation process, we reduced the
conceptual distance between the various artifact
representations and the standardized format used in the
SIAVE system by automated generation and partial
customization of the template. We reduced effort and
time by identifying failing evaluations early via the
aforementioned checklist. The map created for
navigation has a great feature of providing an initial
analysis (if the map is not complete enough for
navigation, it is probably an indication of likely failure
and a pruning opportunity for an overburdened
evaluation process).

6. References
1. Prieto-Diaz, R., The Common Criteria Evaluation Process:

Process Explanation, Shortcomings and Research
Opportunities, CISC Technical Report CISC-TR-2002-003.
December 2002, James Madison Univ.: Harrisonburg, VA.

2. Medvidovic, N. and R. Taylor, A Classification and
Comparison Framework for Software Architecture
Description Languages. IEEE Transactions on Software
Engineering, 2000. 26(1): p. 70-93.

3. Anderson, R.J., Security Engineering: A Guide to Building
Dependable Distributed Systems. 2001 John Wiley & Sons,
Inc., New York, NY.

4. Vatterling, M., G. Wimmel, and A. Wisspeintner, Secure
Systems Development Based On The Common Criteria:
The PalME Project. ACM SIGSOFT Software Engineering
Notes, 2002. 27(6): p.129-138.

5. Information technology -- Security techniques -- Evaluation
criteria for IT security -- Part 1: Introduction and general
model. 2005, (ISO) JTC 1/SC 27.

6. Info. tech. - Security techniques - Evaluation criteria for IT
security Part 2: Security functional requirements.

7. Info. tech. -- Security techniques -- Evaluation criteria for
IT security -- Part 3: Security assurance requirements.

8. Lamsweerde, A.v. Elaborating Security Requirements by
Construction of Intentional Anti-Models. in 26th
International Conference on Software Engineering, 2004.

9. Reiss, S. Constraining Software Evolution. in International
Conference on Software Maintenance. 2002.

10. Arnold, R.S. and S.A. Bohner. Impact Analysis - Towards a
Framework for Comparison. in International Conference
on Software Maintenance. 1993: IEEE Computer Society.

11. Bohner, S. and R. Arnold, Software Change Impact
Analysis. 1996: IEEE Computer Society Press.

12. Lee, M., A.J. Offutt, and R.T. Alexander. Algorithmic
analysis of the impacts of changes to object-oriented
software. in 34th International Conference on Technology
of Object-Oriented Languages and Systems. 2000.

13. Bohner, S., et al., Software Security Impact Analysis
Visualization Research: Phase 2 Report. 2004,
Commonwealth Information Security Center Technical
Report, James Madison University: Harrisonburg, VA.

14. Kriz, R. Reports on the Visual Thinking Experience 2007
[cited March 2007]; Available from:
www.sv.vt.edu/classes/ESM4714/Gen_Prin/vizthink.html.

15. Gibbs, J.W., A Method of Geometrical Representation of
the Thermodynamic Properties of Substances by Means of
Surfaces. Trans. of the CT Academy, 1873. 2: p. 382-404.

