
Denial of Service Games
C. Dingankar Student and R. R. Brooks Associate Professor

Holcombe Department of Electrical and Computer Engineering
P.O. Box 340915

Clemson University
Clemson, SC 29634-0915

Email: cdingan@clemson.edu,rrb@acm.org

We use combinatorial game theory to analyze the dynamics of Distributed Denial of Service (DDoS)
attacks on an enterprise. An initial approach and in depth analysis of DDoS problems can be found in [5].
The attacker (Red) launches a DDoS on the distributed application (Blue). Both Red and Blue play an
abstract board game defined on a capacitated graph, where nodes have limited CPU capacities and edges
have bandwidth constraints. Our technique provides two important results that aid in designing DDoS
resistant systems:

(i) It quantifies the resources an attacker needs to disable a distributed application. The design
alternative that maximizes this value will be the least vulnerable to DDoS attacks.

(ii) When the attacker can not harvest enough zombies to satisfy the limit in (i), we provide near
optimal strategies for reconfiguration of the distributed application in response to attempted
DDoS attacks. While it is intractable to find the optimal strategy for typical applications, since
our problem is P-Space complete (worse then NP-complete) [9], our approach finds a strategy
that is within a known constant offset of the optimal solution [3, 9].

Our analysis starts by finding the feasible network configurations for Blue that satisfy its computation and
communications requirements. The min-cut sets [1] of these configurations are the locations most
vulnerable to packet flooding DDoS attacks. Red places “zombie” processes on the graph, which can
consume network bandwidth. Given enough zombies, Red can win the game by disabling all possible Blue
configurations. When the number of Red zombies is limited, the graph structure is used to define a board
game. Red moves attempt to break Blue communications links. Blue reconfigures its network to re-
establish communications. We analyze this board game using the theory of surreal numbers [2, 6, 7, 8]. If
Blue can make the game “loopy” (i.e. move to one of its previous configurations), it wins [3]. If Red
creates a situation where Blue can not successfully reconfigure the network, it wins. We use “thermograph”
based strategies, originally developed to analyze endgames for Go, to find near optimal reconfiguration
regimes [2, 3, 4].

We define a simple two player game to be played on a computer network. The “physical” graph
(computer network) is represented by a directed graph structure (EG) with N nodes:

{ }

{ , }

{vertices (nodes) with known CPU bandwidth}

directed edges with known communications bandwidth

EG EV EE

EV

EE

=

!

!

 (1.1)

The local communications bandwidth available when two processes are placed on the same node is infinite.
The players are:
• Blue is a distributed application on the network. A set of programs consume CPU resources on the

“physical” nodes. For each pair of programs, there is a known communications bandwidth
requirement. These constraints define a “logical” graph. The set of “feasible configurations” is the
set of mappings of logical nodes to physical nodes, where the logical graph’s CPU and
communications needs are satisfied by the physical graph.

• Red is an attacker that places zombie processes on physical graph nodes. These processes can send
network traffic over the physical edges to consume network resources. If the Red zombies
consume enough communications bandwidth to make the physical graph unable to satisfy one of
the logical graph’s constraints, Blue’s configuration is disabled.

To determine the set of feasible configurations for Blue, we use the directed graph structure (BG) with M
nodes:

 { }

{ }

{ , }

nodes representing distributed programs with CPU requirements

edges representing communications bandwidth needed between two programs

BG BV BE

BV

BE

=

!

!

 (1.2)

The set of feasible configurations for blue is the set of mappings of BV onto EV that satisfy these two
classes of constraints:

• Node Capacity Constraints: The sum of the CPU requirements for the set of nodes from BV
assigned to each element of EV is less than or equal to the CPU bandwidth of that element.

• Edge Capacity Constraints: For each element beij of BE connecting two elements of BV (bvi and
bvj), where bvi (bvj) is mapped to pvi (pvj)1 the max-flow [1] on EG from pvi to pvj must be greater
than equal to the bandwidth requirement of bvij. If pvi and pvj are the same node, the value of the
max-flow is infinite.

The set of feasible blue configuration mappings is denoted as:
 1 2{ , , , }LBC BC BC BC= K (1.3)
Red disrupts a Blue configuration by placing zombies so as to either:

• Attack node capacities – Red places zombies on a node pvi hosting one or more Blue
processes. If Red zombies consume enough CPU cycles, the performance of the Blue
processes on pvi becomes unacceptable. The associated feasible configuration is disabled.

• Flood arcs – Red places zombies on nodes that do not host Blue processes. These nodes
produce network traffic that consumes communications bandwidth on edges in EE. If the
capacity of the min-cut of EG corresponding to an element beij of BE in the current
configuration falls beneath the value beij, the associated feasible configuration is disabled.

The node capacity attack is rather trivial and not very interesting. Also, it is typically difficult for Red
to compromise the servers used by Blue. When this does occur, Blue can also easily detect Red’s presence
and disinfect the server. We therefore concentrate our analysis on flooding attacks.

To determine the set of zombies needed by Red, we:
(i) Calculate the mincut for each element of BE in BCi [1],
(ii) Find the amount of blue slack capacity (BS) at the mincut,
(iii) Find the expected number of blue packets dropped for a given volume of zombie traffic,

and
(iv) Find the volume of red traffic needed to make the number of blue packets dropped be

greater than the slack capacity of the mincut.
This gives us the red traffic (RT) we need to generate in order to flood an element of BE.

1

RT C
BS

!

!

= "
"

 (1.4)

where,
! packets is the Blue (legitimate) traffic
C is the capacity of the physical arc to be attacked

Zombie placement is done by looking at the maxflow between elements of EV. If the maxflow to a

node in the mincut of an element of BE is greater than the value in step (iv), that node is a candidate for
zombie placement. To find the minimum number of zombies required, we look for zombie nodes that can
disable more than one element of BC. The smallest set of zombies needed to disable all elements of BC
quantifies the resistance of Blue to DDoS attacks.

If the attacker does not have enough zombies to disable all Blue configurations, Blue can reconfigure
to recover from the DDoS attack. This defines a simple board game, where:

• Blue starts the game.
• Each player is allowed one move at a time.
• Once Red places a zombie on a node it cannot move that zombie until its next turn.
• Blue reconfigures by migrating a single process from one element of PE to another.

For the moment, we give both Blue and Red perfect knowledge of each other’s configurations. Red tries to
force Blue into a position where it cannot recover by transitioning to another element of BC. Blue tries to
find a “loopy” game [3], where it can always return to a previous configuration. If Blue succeeds in

1 and i jpv PV pv PV! !

creating the “loopy” game where Red cannot escape from the loop, it wins since it can recover from any
attack.

Let’s consider an example. Each player’s moves are denoted by surreal numbers. Blue is the Left
player. The moves of the Blue player are the configurations it can reach from the current configuration. Our
example has 3 Blue nodes and 6 physical nodes. We find that 10 Blue configurations [1, 2, 3………10]
satisfy all the constraints and we require 5 zombies to disable all ten Blue configurations. But Red can only
use 2 zombies at a time. Each combination of 2 zombies is a Red move denoted by A, B, C, ... Table 1
shows the details of the game.

Blue Configuration Reconfigure Zombie Move Zombies Disrupt Blue Configurations
1 2, 3, 4 A 3, 5 1, 2, 7
2 1, 5, 6 B 1, 6 3, 4, 5
3 1, 7 C 3, 4 2, 6, 9
4 1,10 D 1,5 8, 9, 10
5 2, 8, 9
6 2, 9
7 3, 10
8 5
9 5, 6
10 4, 7

Table 1: Details of an example game

We assume that Blue starts the game with Blue configuration 2 and in response to that move Red can

either choose A or C (as both the zombie moves – A and C can disable Blue configuration 2). Let’s assume
that Red chooses A. The game tree for the above example would look like Figure 1. If we have to denote
these game trees in the form of surreal numbers [2, 6, 7, 8, 9], the first level would look like {1, 5, 6 | A, B,
C, D} where 1, 5, 6 are moves Blue can make (from Blue configuration 2) and A, B, C, D are moves Red
can make. As we can see in Figure 1a at level 2 if Blue chooses configuration 6 it will loose but if it
chooses configuration 5 it has a stronger chance of winning. If Blue can form a loop as shown in Figure 1b
[2-5-2] and [5-8-5] Blue will never loose as it can keep looping between these two nodes and Red will
never be able to disrupt it as it will keep reconfiguring itself. In 1a we can see that Red has led Blue into a
position where Blue is unable to reconfigure itself so Red wins the game.

Figure 1a: Game trees Figure 1b: Game trees
NA – Not Allowed

In practice, any given enterprise relies on multiple distributed processes. Similarly, an attacker can not
expect to destroy all of the processes used by the enterprise at any point in time. The attacker will try to
maximize the number of processes it can disable at any point in time. This situation describes a “sum of
games” problem [2], where Blue and Red alternate moves. At each turn, the player chooses a game
(process) and a move to make in that game. This problem has been shown to be P-Space complete [9] but

2

51 6

A

C

[1,2,7]

NA -Zombie at A

2 9

[2,6,9]

NA -Zombie at CNA -Zombie at C

RED WINS THE GAME

2

51 6

A

C

[1,2,7]

NA -Zombie at A

2 9

[2,6,9]

NA -Zombie at CNA -Zombie at C

RED WINS THE GAME

2

51 6

A

B

[1,2,7]

NA - Zombie at A

[3,4,5]

982

Loop – Blue Wins

5

Loop –

Blue Wins

5 6

C [2,6,9]

NA - Zombie

at C
Loop –

Blue Wins

BLUE WINS THE GAME

2

51 6

A

B

[1,2,7]

NA - Zombie at A

[3,4,5]

982

Loop – Blue Wins

5

Loop –

Blue Wins

5 6

C [2,6,9]

NA - Zombie

at C
Loop –

Blue Wins

2

51 6

A

B

[1,2,7]

NA - Zombie at A

[3,4,5]

982

Loop – Blue Wins

5

Loop –

Blue Wins

5 6

C [2,6,9]

NA - Zombie

at C
Loop –

Blue Wins

BLUE WINS THE GAME

Berlekamp has used thermographs, like the one in Figure 2, to tractably find near optimal solutions [2, 3,
4]. In fact, the Sentestrat [2, 3] approach finds solutions within a known constant offset from optimal. In
this approach, players calculate the amount of influence a given move can have on the final result and play
the moves that remove volatility from the system first.

0

5

10

15

5 0 -5

V alue o f the G am e

T
a

x Point

T
A

X

E
X

E
M

P
T

{ {5 | -5 } | -2 0 }
{5 |-5 }

10 -10 -15 -20 -25

-2 0

Free z ing

0

5

10

15

5 0 -5

V alue o f the G am e

T
a

x Point

T
A

X

E
X

E
M

P
T

{ {5 | -5 } | -2 0 }
{5 |-5 }

10 -10 -15 -20 -25

-2 0

Free z ing

Fig. 2 Thermograph for {{5 | -5} || -20}

The following application domains could benefit from this approach:
1. Local Area Networks (LANs): We assume there are no zombies on local machines, but zombies

exist in the larger Internet that may target processes on the LAN. This approach identifies system
bottlenecks and tells the administrator if the volume of the external traffic is enough to
compromise distributed processes on the LAN.

2. Corporate Networks: When geographically separate offices (remote locations) are connected over
the Internet using a Virtual Private Network (VPN), zombies can attack the VPN traffic that
travels through the global Internet. By considering the graph structure of the VPN connections
between corporate controlled autonomous systems, it is possible to create an adaptive VPN
infrastructure that can tolerate DDoS attacks.

3. Global routing problems: Routing between autonomous systems (AS’s) uses the Border Gateway
Protocol, which is subject to instability in the presence of flooding DDoS attacks. Since some
domains (*.edu, *.net, *.ru, …) are more likely to host zombies than others (*.mil, *.gov, …), we
can analyze the AS graph structure to determine if the volume of traffic reaching sensitive BGP
nodes is enough to disrupt the routing between critical agencies.

References:

[1] R. K. Ahuja, T. L. Magnanti, J. B. Orlin, Network Flows, Prentice Hall, Upper Saddle River, NJ, 1993.
[2] E. R. Berlekamp, J. H. Conway, and R. K. Guy, “Winning Ways for your mathematical plays Volume 1: Games in General,”

Academic Press, New York, 1982.
[3] E. R. Berlekamp, “The Economist's View of Combinatorial Games,” in: It Nowakowski (Ed.), Games of No Chance, MSRI

Publications, Vol. 29, Cambridge University Press, Cambridge, 1996, pp. 365-405.
[4] E. Berlekamp and D. Wolfe, Mathematical Go or Chilling Gets the Last Point, A K Peters, Ltd, Wellesley, MA, 1994.
[5] R. R. Brooks, Disruptive Security Technologies, CRC Press, Boca Raton, FLA, 2005.
[6] J. H. Conway, On Numbers and Games, AK Peters, LTD, 2000.
[7] B. C. A. Milvang-Jensen, “Combinatorial Games, Theory and Applications,” Thesis, IT University of Copenhagen, 2000.
[8] C. Tondering, Surreal Numbers – An Introduction, http://www.tondering.dk/claus/surreal.htmlv (last accessed 08/10/2006).
[9] L. J. Yedwab, “On playing well in a sum of games,” M.S. Thesis, MIT, 1985, MIT/LCS/TR-348.

