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We use combinatorial game theory to analyze the dynamics of Distributed Denial of Service (DDoS) 
attacks on an enterprise. An initial approach and in depth analysis of DDoS problems can be found in [5]. 
The attacker (Red) launches a DDoS on the distributed application (Blue). Both Red and Blue play an 
abstract board game defined on a capacitated graph, where nodes have limited CPU capacities and edges 
have bandwidth constraints. Our technique provides two important results that aid in designing DDoS 
resistant systems:  

(i) It quantifies the resources an attacker needs to disable a distributed application. The design 
alternative that maximizes this value will be the least vulnerable to DDoS attacks.  

(ii) When the attacker can not harvest enough zombies to satisfy the limit in (i), we provide near 
optimal strategies for reconfiguration of the distributed application in response to attempted 
DDoS attacks. While it is intractable to find the optimal strategy for typical applications, since 
our problem is P-Space complete (worse then NP-complete) [9], our approach finds a strategy 
that is within a known constant offset of the optimal solution [3, 9]. 

Our analysis starts by finding the feasible network configurations for Blue that satisfy its computation and 
communications requirements. The min-cut sets [1] of these configurations are the locations most 
vulnerable to packet flooding DDoS attacks. Red places “zombie” processes on the graph, which can 
consume network bandwidth. Given enough zombies, Red can win the game by disabling all possible Blue 
configurations. When the number of Red zombies is limited, the graph structure is used to define a board 
game. Red moves attempt to break Blue communications links. Blue reconfigures its network to re-
establish communications. We analyze this board game using the theory of surreal numbers [2, 6, 7, 8]. If 
Blue can make the game “loopy” (i.e. move to one of its previous configurations), it wins [3]. If Red 
creates a situation where Blue can not successfully reconfigure the network, it wins. We use “thermograph” 
based strategies, originally developed to analyze endgames for Go, to find near optimal reconfiguration 
regimes [2, 3, 4]. 

We define a simple two player game to be played on a computer network. The “physical” graph 
(computer network) is represented by a directed graph structure (EG) with N nodes: 
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The local communications bandwidth available when two processes are placed on the same node is infinite.  
The players are: 
• Blue is a distributed application on the network. A set of programs consume CPU resources on the 

“physical” nodes. For each pair of programs, there is a known communications bandwidth 
requirement. These constraints define a “logical” graph. The set of “feasible configurations” is the 
set of mappings of logical nodes to physical nodes, where the logical graph’s CPU and 
communications needs are satisfied by the physical graph. 

• Red is an attacker that places zombie processes on physical graph nodes. These processes can send 
network traffic over the physical edges to consume network resources. If the Red zombies 
consume enough communications bandwidth to make the physical graph unable to satisfy one of 
the logical graph’s constraints, Blue’s configuration is disabled. 

To determine the set of feasible configurations for Blue, we use the directed graph structure (BG) with M 
nodes: 
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The set of feasible configurations for blue is the set of mappings of BV onto EV that satisfy these two 
classes of constraints:  

• Node Capacity Constraints: The sum of the CPU requirements for the set of nodes from BV 
assigned to each element of EV is less than or equal to the CPU bandwidth of that element. 

• Edge Capacity Constraints: For each element beij of BE connecting two elements of BV (bvi and 
bvj), where bvi (bvj) is mapped to pvi (pvj)1  the max-flow [1] on EG from pvi to pvj must be greater 
than equal to the bandwidth requirement of bvij. If pvi and pvj are the same node, the value of the 
max-flow is infinite. 

The set of feasible blue configuration mappings is denoted as: 
  1 2{ , , , }LBC BC BC BC= K  (1.3) 
Red disrupts a Blue configuration by placing zombies so as to either: 

• Attack node capacities – Red places zombies on a node pvi hosting one or more Blue 
processes. If Red zombies consume enough CPU cycles, the performance of the Blue 
processes on pvi becomes unacceptable. The associated feasible configuration is disabled.  

• Flood arcs – Red places zombies on nodes that do not host Blue processes. These nodes 
produce network traffic that consumes communications bandwidth on edges in EE. If the 
capacity of the min-cut of EG corresponding to an element beij of BE in the current 
configuration falls beneath the value beij, the associated feasible configuration is disabled. 

The node capacity attack is rather trivial and not very interesting. Also, it is typically difficult for Red 
to compromise the servers used by Blue. When this does occur, Blue can also easily detect Red’s presence 
and disinfect the server. We therefore concentrate our analysis on flooding attacks. 

To determine the set of zombies needed by Red, we:  
(i) Calculate the mincut for each element of BE in BCi [1],   
(ii) Find the amount of blue slack capacity (BS) at the mincut,   
(iii) Find the expected number of blue packets dropped for a given volume of zombie traffic, 

and  
(iv) Find the volume of red traffic needed to make the number of blue packets dropped be 

greater than the slack capacity of the mincut. 
This gives us the red traffic (RT) we need to generate in order to flood an element of BE. 
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where,  
!  packets is the Blue (legitimate) traffic 
C is the capacity of the physical arc to be attacked 

 
Zombie placement is done by looking at the maxflow between elements of EV. If the maxflow to a 

node in the mincut of an element of BE is greater than the value in step (iv), that node is a candidate for 
zombie placement. To find the minimum number of zombies required, we look for zombie nodes that can 
disable more than one element of BC. The smallest set of zombies needed to disable all elements of BC 
quantifies the resistance of Blue to DDoS attacks.  

If the attacker does not have enough zombies to disable all Blue configurations, Blue can reconfigure 
to recover from the DDoS attack.  This defines a simple board game, where:  

• Blue starts the game.  
• Each player is allowed one move at a time.  
• Once Red places a zombie on a node it cannot move that zombie until its next turn.  
• Blue reconfigures by migrating a single process from one element of PE to another.  

For the moment, we give both Blue and Red perfect knowledge of each other’s configurations. Red tries to 
force Blue into a position where it cannot recover by transitioning to another element of BC. Blue tries to 
find a “loopy” game [3], where it can always return to a previous configuration. If Blue succeeds in 
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creating the “loopy” game where Red cannot escape from the loop, it wins since it can recover from any 
attack.  

Let’s consider an example. Each player’s moves are denoted by surreal numbers. Blue is the Left 
player. The moves of the Blue player are the configurations it can reach from the current configuration. Our 
example has 3 Blue nodes and 6 physical nodes. We find that 10 Blue configurations [1, 2, 3………10] 
satisfy all the constraints and we require 5 zombies to disable all ten Blue configurations. But Red can only 
use 2 zombies at a time. Each combination of 2 zombies is a Red move denoted by A, B, C, ... Table 1 
shows the details of the game. 
 
Blue Configuration Reconfigure Zombie Move Zombies Disrupt Blue Configurations  
1 2, 3, 4 A 3, 5 1, 2, 7 
2 1, 5, 6 B 1, 6 3, 4, 5 
3 1, 7 C 3, 4 2, 6, 9 
4 1,10 D 1,5 8, 9, 10 
5 2, 8, 9    
6 2, 9    
7 3, 10    
8 5    
9 5, 6    
10 4, 7    

 
Table 1: Details of an example game 

 
We assume that Blue starts the game with Blue configuration 2 and in response to that move Red can 

either choose A or C (as both the zombie moves – A and C can disable Blue configuration 2). Let’s assume 
that Red chooses A. The game tree for the above example would look like Figure 1. If we have to denote 
these game trees in the form of surreal numbers [2, 6, 7, 8, 9], the first level would look like {1, 5, 6 | A, B, 
C, D} where 1, 5, 6 are moves Blue can make (from Blue configuration 2) and A, B, C, D are moves Red 
can make. As we can see in Figure 1a at level 2 if Blue chooses configuration 6 it will loose but if it 
chooses configuration 5 it has a stronger chance of winning.  If Blue can form a loop as shown in Figure 1b 
[2-5-2] and [5-8-5] Blue will never loose as it can keep looping between these two nodes and Red will 
never be able to disrupt it as it will keep reconfiguring itself. In 1a we can see that Red has led Blue into a 
position where Blue is unable to reconfigure itself so Red wins the game.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1a: Game trees                                                                         Figure 1b: Game trees 
NA – Not Allowed 
 

In practice, any given enterprise relies on multiple distributed processes. Similarly, an attacker can not 
expect to destroy all of the processes used by the enterprise at any point in time. The attacker will try to 
maximize the number of processes it can disable at any point in time. This situation describes a “sum of 
games” problem [2], where Blue and Red alternate moves. At each turn, the player chooses a game 
(process) and a move to make in that game. This problem has been shown to be P-Space complete [9] but 
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Berlekamp has used thermographs, like the one in Figure 2, to tractably find near optimal solutions [2, 3, 
4]. In fact, the Sentestrat [2, 3] approach finds solutions within a known constant offset from optimal. In 
this approach, players calculate the amount of influence a given move can have on the final result and play 
the moves that remove volatility from the system first. 
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Fig. 2 Thermograph for {{5 | -5} || -20} 

 
The following application domains could benefit from this approach: 
1. Local Area Networks (LANs): We assume there are no zombies on local machines, but zombies 

exist in the larger Internet that may target processes on the LAN. This approach identifies system 
bottlenecks and tells the administrator if the volume of the external traffic is enough to 
compromise distributed processes on the LAN. 

2. Corporate Networks: When geographically separate offices (remote locations) are connected over 
the Internet using a Virtual Private Network (VPN), zombies can attack the VPN traffic that 
travels through the global Internet. By considering the graph structure of the VPN connections 
between corporate controlled autonomous systems, it is possible to create an adaptive VPN 
infrastructure that can tolerate DDoS attacks. 

3. Global routing problems: Routing between autonomous systems (AS’s) uses the Border Gateway 
Protocol, which is subject to instability in the presence of flooding DDoS attacks. Since some 
domains (*.edu, *.net, *.ru, …) are more likely to host zombies than others (*.mil, *.gov, …), we 
can analyze the AS graph structure to determine if the volume of traffic reaching sensitive BGP 
nodes is enough to disrupt the routing between critical agencies. 
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