
Survivability in Wireless Networks:
A Case for Overhead Reduction

Axel W. Krings
University of Idaho

Moscow, Idaho 83844-1010, USA

Abstract: A link scheduling model is presented that uti-
lizes primary-backup scheduling for packet scheduling.
The advantage of this scheduling paradigm is that over-
head can be suppressed in the fault-free case and over-
head only needs to be endured in case of actual faults. The
scheduling paradigm significantly increases survivabil-
ity and can be used to reduce overhead of redundancy-
based approaches. The foundation for using primary-
backup scheduling in networks is derived. The schemes
presented are very effective for multi-path protocols and
MIMO and can be applied where watchdog-based algo-
rithms fail or where geographic-centric disruptions ren-
der local approaches useless.

1 Introduction

With the tremendous growth of wireless applications in
recent years comes great concern for the lack of reliabil-
ity, security and survivability. Especially in applications
in the area of ad hoc and sensor networks there are many
new challenges due to their features and the inherent char-
acteristics of wireless technology. The main considera-
tions have been routing and the overhead resulting from
dealing with disruptions of the communication paths. As
a result, many protocols have been introduced. However,
in critical applications operating in hostile environments
the security and survivability requirements may be much
higher than usual and fault assumptions should include
pathological behavior capable of introducing value faults.
Furthermore, most research has focused on operation in
benign environments where security considerations were
not the driving motivation.

Since this work relates to tolerance of faults of differ-
ent types under possibly pathological scenarios, we need
to explore redundancy mechanisms. As such, any ap-
proach utilizing multipath and multiflow communication
could have the potential for tolerating faults, if these con-
cepts are exploited for reliability [12]. Many multipath
and multiflow approaches have been presented in the lit-
erature, but their focus has not been on tolerating diverse
faults but have rather been limited to overcome benign
link or node faults. For example, the concept of multiflow
has been used in [13] in the context of QoS enhancement,
however, the focus is on transmission congestion. Mul-
tipath routing has been used to increase end-to-end relia-
bility, e.g. the MP-DSR protocol in [8] forwards outgoing
packets along multiple paths that are subject to a particu-
lar end-to-end reliability requirement, this however raises
overhead concerns.

Primary and backup communication paths are consid-
ered in [9]. However, disjoint paths are not exploited for
data redundancy but discarded as unwanted overhead. In
their use of redundant disjoint paths the overhead to re-
silience tradeoff becomes unfavorable for a larger num-
ber of paths [2, 10]. We consider a different approach to
primary and backup communication adopted from fault-
tolerant multi-processor scheduling with focus on over-
head reduction.

2 Network Survivability Model

For our purposes, the term survivability and reliability
may be interchanged. Survivability was elected to em-
phasize that the operating environment may be malicious.



The communication network is represented as a digraph
G = (V,E), where computational nodes are the vertices
and communication “links” are the edges. An edge eij

is present in E if node vj receives the signals of node
vi. If a source node vS wants to establish a communi-
cation path with a destination node vD, then the reliabil-
ity of the path vS-vD is clearly depending on the reliabil-
ity of the nodes and communication links along the path.
To tolerate faults, may they be of benign nature or mali-
ciously induced, one can chose to increase the survivabil-
ity of the primary communication path vS-vD, e.g. using
schemes such as presented in [11] or [6], or one can use a
multi-path approach, considering alternative paths under
the assumption that a certain threshold of “good” paths
can mask faults.

Adding path diversity to the communication scheme,
one inherits the undesirable overhead of multi-path rout-
ing and packet redundancy. In order to reduce overhead,
we revert to using a proven mechanism from real-time
scheduling. Specifically, we adopt primary-backup (PB)
link scheduling, which was introduced in the context of
fault-tolerant scheduling in real-time multiprocessor sys-
tems [1, 4]. Essentially, non-preemptive computational
tasks (consisting of a primary and a backup task) are ac-
cepted into the real-time system if a feasibility test guar-
antees that the task can be scheduled to meet its deadline.
Otherwise the task is rejected. If the primary task fails,
due to transient or permanent faults, the backup task is
executed. To avoid unnecessary overhead in the non-fault
case, backup overloading is utilized. Whereas multipro-
cessor scheduling considers scheduling tasks onto proces-
sors, we are concerned with scheduling packets onto com-
munication links. As such, a communication link and a
processor are analogous. Similarly, data packets and com-
putational tasks are analogous.

...
in-queue(s)

queue M

queue 1

queue 2
...

link 1

link 2

link M

Figure 1: Conceptual Network Node

To make the analogy between links and processors
some justification is necessary. We view a network node
vi of G as having separate links, i.e. channels, as shown
in Figure 1. Packets are received into one or more input
queues and scheduled on links via their associated output
queues. This makes perfect sense in fixed networks, but
in wireless nodes this view is only conceptual. Only in the
case of MIMO (multiple-input-multiple-output), where
dual-array multiple-antenna systems are used, is this rep-
resentation apparent. However, in the absence of MIMO,
we can still justify this view using multiplexing. For ex-
ample, consider code division multiple access (CDMA).
In CDMA multiple channels are multiplexed without di-
viding up the channel by time, thus logically implement-
ing the concept of Figure 1. Time division multiple access
(TDMA), on the other hand, allows multiple links to be
emulated by sharing the link in a time-division scheme.
Again, assuming the time slots are relatively small, the
concept in the figure is preserved.

Next, we introduce notation for scheduling packets on
links, or practically, their associated queues. Given the
abstraction of a wireless node above, let Lj denote link
j. We will speak of “scheduling packets on links”, which
actually means that packets are scheduled in the respec-
tive queues. Associated with each data packet Pi are the
attributes arrival time ai, i.e. the time at which Pi enters
the in-queue of the node, the ready time ri, which is the
time the packet is ready to be moved to the outgoing link
queue, the start time si, the time the packet is starting to
be transmitted, transmission time li, which is the time it
takes to send out the packet of size l, the finish time fi,
the time the last bit of the packet has left the link, and
the deadline di, which defines the latest deliver time as
needed to guarantee QoS. Note that li = fi − si.

For each packet Pi a primary Pri and a backup copy
Bki are defined. Note that “copy” can refer to redun-
dant pointers to a single data object. The purpose of Bki

is that, if the transmission of Pri fails, it will serve as
a backup. The deadline for the acknowledgment of the
primary’s delivery in the fault-free case is called acknowl-
edge time, ack(Pri). Thus ack(Pri) constitutes the max-
imal time up to which one can wait for an acknowledg-
ment. The actual time when Pri is acknowledged is de-
noted by tack(Pri), with tack(Pri) ≤ ack(Pri) in the
fault-free case. Thus, if an acknowledge of delivery has
not been received by ack(Pri), it is assumed that a fault



has occurred. However, if Pri is successfully delivered,
which would be confirmed at tack(Pri) ≤ ack(Pri),
then Bki can be discarded from the queue. The backup
only requires link resources if the primary fails. Other-
wise, the only penalty for utilizing the backup is the over-
head associated with queue management. From a practi-
cal point of view, the value for ack(Pri) is chosen based
on the expected transmission time in the no-fault scenario.
If the expected time it takes to acknowledge Pri is ta,
then ack(Pri) = s(Pri)+αta where α ≥ 1 is a constant
affecting how sensitive the fault detection is. This should
be only an expected (pessimistic) value, and thus high ac-
curacy in a minimal ack(Pri) may not be meaningful.

An acknowledge tack(Pri) of a packet Pi addresses
the round-trip delay of the packet, i.e. the time to de-
liver the packet plus the time it takes to send and de-
liver the acknowledge back to the sender. We will as-
sume that the only way we can practically expect that
a packet is delivered is at the time of its acknowledge
tack(Pri) ≤ ack(Pri). This way we avoid the issues as-
sociated with the case where faults occur during the time
of transmission or acknowledge. Note that ack(Pri) is
a parameter reflecting the expected transmission time in
the absence of faults. This should not be confused with
timeout parameters of the transport control protocol, e.g.
TCP

The packet attributes defined for Pi above will be used
for Pri and Bki as well, e.g. s(Pri) is the primary’s
starting time or f(Bki) the finishing time of the backup.
We assume that in the schedule of packet Pi the tim-
ing relationship between Pri and Bki is ai ≤ ri ≤
s(Pri) < f(Pri) ≤ ack(Pri) ≤ s(Bki) < f(Bki) <
tack(Bki) ≤ di. Furthermore, we assume that if Pri fails,
then backup Bki will succeed. Thus, at most one fault is
assumed for packet Pi. An important assumption for PB
scheduling is that the primary and backup of Pi cannot be
scheduled on the same link, i.e. L(Pri) 6= L(Bki).

In order to minimize the overhead associated with
scheduling backup packets the concept of backup over-
loading is adopted. Figure 2 shows the concept. Packet P1

has its primary Pr1 scheduled on link L1 and its backup
Bk1 on L2. Similarly, P2 has Pr2 scheduled on L3 with
its backup Bk2 on L2, thus overloading L2 from s(Bk2)
to f(Bk1). This has consequences for the assumptions
about faults.

In the figure both backup packets overlap. It can eas-

Bk1

Pr1

Pr2

L1

L2

L3

Bk2

timehead of queue

Δt1
ack(Pr1)

ack(Pr2)
∬

Figure 2: Backup Overloading

ily be shown that if two backups Bki and Bkj are over-
lapping on a link, then their respective primaries must be
scheduled on different links. Conversely, if Pri and Prj

are scheduled on the same link, then their backups must
not overload.

The desirable feature of backup scheduling is that given
packet Pi, backup Bki can be deleted if Pri is deliv-
ered successfully at tack(Pri) ≤ ack(Pri). The usage
of backup overloading requires the introduction of the no-
tion of Time to Second Fault (TTSF), which is the time at
which a second fault can occur without risking the loss
of a packet due to overloading. Note that the smaller
TTSF is, the more resilient the system becomes to sec-
ond faults. Let TTSF(Li) indicate the time to second fault
with respect to link Li. It can be shown that TTSF is the
maximum TTSF(Li), which is defined as the maximum
time of the acknowledge of the primary whose backup is
scheduled on the link and the acknowledge of the backup
scheduled on the link.

Whereas the previous discussion considered benign and
omission faults, we now turn to the impact of value faults,
i.e. the case where the content of a packet is manipu-
lated. To tolerate k such faults, by definition, one needs
2k + 1 redundant packets, which will guarantee that the
good packets are in the majority. This should not be con-
fused with the Byzantine majority of asymmetric faults in
distributed agreement [7].

If one wants to detect a single value fault using PB
scheduling one can extend the concept to include two pri-
mary copies and a backup. Thus, for packet Pi we con-
sider primary Pri, secondary Sei and backup Bki. The
deadline for the acknowledge of both Pri and Sei is as-
sumed to be ack(Pri). Upon acknowledgment of both



Pri and Sei the backup Bki is unscheduled. Conversely,
if either Pri or Sei fail to acknowledge, Bki is required.
It should be noted that in principle scheduling of a pri-
mary and a secondary on disjoint links allows for correc-
tion in the case of a benign and omission fault and for de-
tection of a value fault. In the latter case, the possible tie
between packets can be resolved with the backup packet,
constituting fault recovery. Thus, logically this scheme
corresponds to the so-called hybrid-SCP-TMR [3], where
in the case of real-time multi-processor scheduling two
copies execute first, implemented as a Self Checking Pair
(SCP). If the outputs do not agree, the third copy is sched-
uled to break the tie, thus implementing Triple Modular
Redundancy (TMR).

In the context of link scheduling, the detection mech-
anism of the hybrid-SCP-TMR requires further explana-
tion. Note, that by the definition of this configuration the
detection of a value fault requires that a difference in the
packet contents must be observed. In the multiprocessor
case of [3] this is done by a comparator, e.g. a voting
task, which detects that the results of the two tasks differ.
In the network protocol stack the detection of differences
in the packet contents can be observed by the receiver of
the packets, e.g. by the observation that the signatures
(or frame check sequences) of the primary and secondary
packets do not match.

If the receiving node detects that the content of Pri

and Sei do not match, then an explicit or implicit message
rejecti is issued. An explicit reject message identifies the
mismatch of the packet content between the two copies of
Pi. Alternatively, an implicit reject is realized by simply
not acknowledging a packet, thus triggering a timeout at
ack(Pri). In both cases backup Bki is sent to break the
tie.

Next, we want to establish the timing relationships
of the packets. Assuming s(Pri) ≤ s(Sei), the tim-
ing relationship between Pri, Sei and Bki is r(Pi) ≤
s(Pri) ≤ s(Sei) < ack(Pri) ≤ s(Bki) < f(Bki) <
tack(Bki) ≤ di. Furthermore, we have f(Pri) ≤
ack(Pri) and f(Sei) ≤ ack(Pri).

To avoid packet loss in the presence of a permanent
value faults the primary, secondary and backup of a packet
must be scheduled on different links, i.e. L(Pri) 6=
L(Sei) 6= L(Bki). This follows directly from the func-
tion of a TMR, which can handle exactly one value fault
under the assumption of independence of faults. Schedul-

ing two or more copies of the packet on the same link
would violate this independence assumption.

As in simple PB scheduling we assume that if Pri or
Sei fail, i.e. one packet content is corrupted, then backup
Bki will succeed. Assume that packets Pi are scheduled
using backup overloading under a hybrid-SCP-TMR strat-
egy. Furthermore, assume that at time t link Lk experi-
ences permanent value faults. Then another fault can be
tolerated at time t′ = max{t1, t2, t3}, where

t1 = max{tack(Bki), ∀Pri : L(Pri) = Lk}

t2 = max{tack(Bki), ∀Sei : L(Sei) = Lk}

t3 = max{tack(Pri), tack(Sei), ∀Pri, Sei :
L(Bki) = Lk}

If the exact time of tack(Pri) ≤ ack(Pri) is not known,
tack(Pri) = ack(Pri) must be assumed. The same holds
for Sei and Bki. Contrary to the case of a simple primary-
backup scheme, now the overhead associated with the sec-
ondary has to be tolerated. However, overhead induced
by the backup packets are still suppressed in the non-fault
case.

3 Reliability Analysis
The reliability of a communication channel, R(t), is the
probability that the communication is failure-free during
the entire time-interval [0, t]. In order to determine the re-
liability of communication using PB link scheduling four
approaches were analyzed, assuming fail rate λ = 10−3

per time unit. First, a Single Path was considered, i.e.
a communication path without packet redundancy. Sec-
ond, simple PB scheduling was considered, however, we
relaxed the assumptions about a guaranteed delivery of
the backup packet, since in a real system no such guar-
antee can be given. Thus, the results shown are more re-
alistic, but at the same time more pessimistic. Third, we
considered Hybrid SCP-TMR scheduling for value faults,
again under the relaxation of guaranteed backup packet
delivery. Fourth, we used the previous scheme, but only
consider benign faults. This effectively changes the hy-
brid SCP-TMR into a 1-of-3 system. The results of the
four different approaches are shown in Figure 3. As can
be seen all primary-backup approaches show significant



Figure 3: Unreliability for PB Scheduling

improvements over the single path approach. Further-
more, in non-faulty scenarios the improvements come at
no communication cost.

4 Conclusions

Primary-backup link scheduling was introduced as a
mechanism that significantly increases survivability for
wireless networks. The concept was demonstrated for
multi-path networks for simple fault models (benign and
omission faults) and value faults. The overhead associated
with the scheme results in only negligibly small local link
scheduling overhead in the fault free case. Thus, the bur-
den of multi-path packet overhead was only induced if an
actual fault occurred.

References
[1] R. Al-Omari, et.al, Efficient overloading techniques for

primary-backup scheduling in real-time systems, Journal
of Parallel and Distributed Computing, Vol. 64, Issue 5,
pp. 629-648, May 2004.

[2] D. Ganesan, et.al., Highly-resilient, energy-efficient multi-
path routing in wireless sensor networks, Mobile Comput-

ing and Communications Review, Vol. 4, No. 5, October
2001.

[3] O. Gonzalez, et.al., Adaptive Fault Tolerance and Grace-
ful Degradation Under Dynamic Hard Real-time Schedul-
ing, Proc. IEEE Real-Time Systems Symposium, pp. 79-89,
1997.

[4] S. Ghosh, et.al., Fault-Tolerant Scheduling on a Hard Real-
Time Multiprocessor System, Proceedings of the Interna-
tional Parallel Processing Symposium, pp. 775-782, 1994.

[5] S. Ghosh, et.al., Fault-tolerance through scheduling of ape-
riodic tasks in hard real-time multiprocessor systems, IEEE
Trans. Parallel Distributed Systems, 8 (3), pp. 272-284,
March 1997.

[6] A. Krings, and Z. Ma, Fault-Models in Wireless Commu-
nication: Towards Survivable Ad Hoc Networks, Military
Communications Conference, MILCOM 2006, pp. 1-7, 23-
25 Oct. 2006.

[7] L. Lamport, et.al., The Byzantine Generals Problem, ACM
Transactions on Programming Languages and Systems, Vol.
4, No. 3, pp. 382-401, July 1982.

[8] R. Leung, J. Liu, E. Poon, A. Chan and B. Li, MP-DSR: A
QoS-aware Multi-path Dynamic Source Routing Protocol
for Wireless Ad-Hoc Networks, Proc. 26th Annual IEEE
Conference on Local Computer Networks, LCN 2001, pp.
132-141, 2001.

[9] H. Liu and D. Raychaudhuri, Label Switched Multi-path
Forwarding in Wireless Ad-Hoc Networks, Proceedings of
the 3rd Intl Conf. on Pervasive Computing and Communica-
tions Workshops, (PerCom 2005 Workshops), pp. 248-252,
2005.

[10] M. K. Marina and S. R Das, On-Demand Multipath Dis-
tance Vector Routing for Ad Hoc Networks, Proc. of the
International Conference for Network Protocols (ICNP),
Riverside, USA, pp. 14-23, 2001.

[11] Sergio Marti, et.al., Mitigating routing misbehavior in mo-
bile ad hoc networks, Mobile Computing and Networking,
pp. 255-265, 2000.

[12] S. Mueller, R. P. Tsang, and D. Ghosal, Multipath Routing
in Mobile Ad Hoc Networks: Issues and Challenges, MAS-
COTS 2003, LNCS 2965, Springer-Verlag, pp. 209234,
2004.

[13] N. Thanthry, et.al., TCP-M: Multiflow Transmission Con-
trol Protocol for Ad Hoc Networks, EURASIP Journal
on Wireless Communications and Networking, Article ID
95149, 16 pages, 2006.


