Toward Mitigating Denial of Service Attacks in
Power-Constrained Sensor Networks

0. Arazi"?, H Qi!
!Department of Electrical and Computer Engineering
University of Tennessee, Knoxville, TN 37996-2100

2Cyberspace Sciences & Information Intelligence Research Group (CSIIR)
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6418

Abstract—The challenging characteristics of sensor nodes,
including the constrained resources, the ad-hoc nature of their
deployment and the vulnerability of wireless media, pose a need
for unique security solutions. The advantages of Public Key
Cryptography (PKC) for sensor network security are widely ac-
knowledged and include resilience, scalability and decentralized
management. Recent work has indicated that PKC is feasible
in the wireless sensor network (WSN) environment, paving the
way for many new security services and opportunities. However,
the computational effort involved in performing PKC operations
remains substantial. From an energy consumption perspective, it
is imperative that the processing and communication resources be
utilized only when required. A malicious party attacks a sensor
node by repetitive requests to establish a key, the resources of
the attacked node can be exhausted quite rapidly. In this paper,
we present an RSA-based framework for combating DoS attacks
in WSN by ensuring that the malicious party will exhaust its
resources prior to exhausting those of its counterparts. Under
the proposed approach, the mathematical operations performed
by the malicious party require two or three orders of magnitude
more resources than those required by the attacked party.

I. INTRODUCTION

The sensor network, as a network of embedded sensing
systems, has been studied extensively since the late 90s.
Considerable efforts have been directed towards making them
trustworthy [1], [2]. This is particularly true in health and
military applications, where critical information is frequently
exchanged among sensor nodes through insecure wireless
media. In every application, the security of the system, both in
terms of safeguarding against malicious attacks and resilience
under malfunction, is a vital component. Although the arca
of network security has been studied for decades, the many
unique characteristics of sensor networks have traditionally
rendered direct application of existing solutions impractical. A
fundamental requisite for security, other than providing data
confidentiality and authentication, is Denial of Service (DoS)
prevention. The computational effort involved in performing
PKC calculations is substantial. From an energy consumption
perspective, it is imperative that the processing and communi-
cation resources be utilized only when required. To that end,
PKC implementations are more vulnerable to DoS attacks,
when compared to traditional security methods that require
less resources. In particular, if a malicious party attacks a
sensor node by futile repetitive requests to establish a joint

secret key, the resources of the attacked node will be exhausted
quite rapidly. To address this issue, we present a public key
cryptographic approach for mitigating DoS attacks in sensor
networks.

II. ECC-BASED KEY GENERATION AND AUTHENTICATION
A. Notation and Formulation

We begin by reviewing the foundations for ECC-based key
generation and authentication, as introduced by the authors in
[3]. Our mathematical foundations rely on ECC cryptographic
techniques pertaining to operations over a finite group of
points in which the discrete log problem applies. In order to
describe the formalism for efficient two-node Diffie Hellman
(DH) key generation, we must first define some notations and
terminologies. A group-point is hereby denoted by a capital
letter in bold font and a scalar will be presented in regular
lowercase letters. Multiplication of a point by a scalar (e.g.,
s x P) will be referred to as an exponentiation, where s is the
exponent. The intractability of a discrete log operation means
that given the points P and s x P, the complexity of finding s is
exponential. The following notations are employed throughout
the remainder of this paper: G - a generating group-point, used
by all relevant nodes; ordG - the order of G. (exponents are
calculated modulo ordG); d - the CA’s private key; R - the
CA’s public key (where R = d x G); x; - the private key
of node ¢ served by the CA; U; - the public key of a node i
served by the CA; I D, - the identification details, or attributes,
of node 4; H (v, W) - a scalar obtained by performing a hash
transformation on the scalar v and group point W3 h; - a
random 160-bit scalar generated by the CA (for the purpose
of calculating x;); IN;, N;- sensor nodes ¢ and j, respectively.

B. Keys Issued to Nodes by the CA

The private and public keys discussed here are issued by the
CA to all nodes in the network. We will begin our discussion
by focusing only on keys issued to IV;. As indicated above,
the CA holds a pair of keys (private (d) and public (R)). By
using d, ID,, h;, a hash function and G, the CA establishes
the pair of private and public keys issued to node i. We
consider two scenarios for issuing the private key (z;), and the
public key (U;) of node i. The node’s private key z;, used in
the following applications, can be derived by either scenarios



described in this section. In the first scenario, the CA knows
the node’s secret keys. In this case, N;’s private key (x;), and
the public value (U;) can be generated as follows. First, the
CA generates a random scalar h; and calculates h; X G. Next,
the CA then generates node i’s public and private keys by
performing:

U, = hxG M
[H(ID;,U;) X h; +d] mod ordG

Z; =

The CA issues the values x; and U; to NV;, at which time
N; can establish the validity of the values issued to him by
checking whether 2; x G = H(ID;,U;) x U; + R. In the
second scenario considered, the CA is not allowed to know the
node’s secret keys and V;’s private key and public key can be
generated as follows. First, the node generates a random value
v; and submits W; = v; X G to the CA. Next, the CA generates
a random h; and calculates h; x G. The CA then generates
the pair of private and public keys by performing:

U, = W;+hxG 2)
pi = [H(ID;,U;) x hi + d] mod ordG

and issues the values p; and U; to N;. At this point, N;
generates his secret key x; = [p; + H(ID;,U;) X v;] mod
ordG and N; can establish the validity of the values p; and U;
issued to him by checking whether p; x G = H(ID;,U;) x
(U; — W,;) + R. Two important points should be noted here.
First, in both cases x; x G = H(ID;,U;) x U; + R, and
second since z; = [H(ID;,U;) x (hi+v;) + d] mod ordG,
z; x G = H(ID;,U;) x U; + R, which is identical to the
case of the CA being allowed to know the node’s secret keys.

III. DOS MITIGATION AND KEY-GENERATION

The ECC-based procedure for key generation, which in-
cluded certification, as described by the authors in [4] does
not include any mechanism for DoS mitigation. The DoS
attack considered occurs when a malicious node repeatedly
approaches legitimate nodes, requesting to establish a joint
secret key. The energy consumed by the legitimate nodes,
in the process of key generation, is substantial. Therefore,
such an attack strategy can drain their energy. An efficient
DoS mechanism should be able to mitigate such attacks. The
proposed DoS mitigation approach comprises of two comple-
menting parts. The first pertains to the instigator, Alice, who
has to prove her validity to Bob, the party (node) approached.
We assume that Alice is a node having limited resources
similar to those of Bob. The second part, which takes into
effect only if Alice has indeed proven her validity, pertains to
Bob, who is required to prove his validity to Alice. We will
demonstrate that if the two procedures are successful, i.e., the
identity of both Alice and Bob is validated, then an ephemeral
key can be issued. The latter implies that each time a certain
legitimate node wishes to establish a key with a neighboring
node, not only are the chances of a DoS attack diminished,
but a different secret key will be generated. We shall refer to
the following notations in the context of the proposed DoS

mitigation scheme: n; is user /s public key, d; his private
key, CR; his (CA issued) certificate, and ID; his public key
identification. The following sections describe, in detail, the
two stages of the DoS mitigation method.

A. The Instigator Node Proving Its Validity

The specific scenario described in this case pertains to a ma-
licious node who is attempting to drain the energy of a trusted
nodes. The first step of a key establishment protocol consists
of an instigator node (Alice) initiating communications with
another node (Bob). We shall refer to the instigating node as
a suspicious node which is required to prove its identity. We
thus expect that during the first stage of the key exchange
process, the majority of the energy consumed will be on
Alice’s part. This would mean that if a DoS attack is carried
out, whereby a malicious node repeatedly attempts to generate
a key with a valid node, the latter will be required to use as
little energy as possible. We must assume that most of the
nodes are not jeopardized; hence the instigating nodes are to
be "presumed innocent until proven guilty". In other words, the
amount of energy drained from Alice will be significant, yet
not too high so as to deplete her battery too fast. However, if
Alice is malicious, and attempts to establish keys with various
nodes, she will eventually run out of energy and /or expose her
malicious nature. The method described next is based on the
notion of key transport [5] using RSA [6] with e = 3. We note
that e = 3 is considered sufficiently secure. (Higher levels of
security are satisfied by e = 216 +1 = 65537.) The following
four steps constitute an ephemeral key exchange procedure
that embeds the DoS mitigation mechanism:

Step 1 - Alice sends Bob her public key, n 4, her identifica-
tion, I D 4, and her certificate (issued by the CA), CR4. The
certificate is the CA’s signature on the association between
na and ID,4. An example for such an association can be:
na®IDs = H(na,ID,). Note that D4 can be a small
number; n4 can be 1024 bits (as in the protocol used here),
hence H(na,ID ) depends on the length of n 4. In this case,
CRA = [H(na, IDA)}dCA mod nc 4. Naturally, only the CA
can create the C' R4 by using its private key dca.

Step 2 - Bob verifies the validity of the certificate (CR4)
by testing the equality (CR)° mod nca < H(na,IDya). If
the latter holds, Bob knows that n4 and I D4 are undeniably
connected. Since e = 3, this step requires Bob to compute only
two modular multiplications. If indeed (CR A)3 modngca =
H(na,IDj4), Bob can then continue with generating a mes-
sage m (it will later be shown how this message is utilized as
part of the key generation process), compute ¢ = m® mod n 4
and transmit ¢ to Alice. Again, since e = 3, Bob has to
calculate only 2 modular multiplications at this step. (For
e = 216 11 Bob has to calculate 17 modular multiplications.)

Step 3 - Alice needs to prove that she indeed possesses the
private key d4, proving to her counterpart that her identity
is valid. This is true since the CA would have given this
private key only to her. Let s, denote the number of bits in
x, the least significant section of m. Alice needs to calculate
t%4 modn, = m and send Bob x. Message m is comprised



out of n bits such that n >> s,. The rest of the bits in the
message will be used for the ephemeral key generation, as will
later be described.

It should be noted that, in contrast to Bob (who needs
to calculate 2 modular multiplications, or 17 in the worse
case), Alice has to perform a computationally heavy task as
d4 typically consists of either 512 or 1024 bits. In the latter
case she has to calculate 1536 modular multiplications, on
the average, using the common square-and-multiply process.
To that end, the approach proposed shifts the computational
burden on the instigating node.

Step 4 - Bob compares the binary vector x he receives
from Alice with the s, least significant bits in m. If these
are identical he determines that Alice’s identity is valid. If
not, he asserts that Alice is malicious and terminates the
key establishment process. It should be noted that this is
achieved by performing merely four modular multiplications,
two receptions and 1 transmission.

The above process has achieved several key goals. First, the
instigating node (Alice) uses more energy than the approached
node (Bob) as she calculates %4 modmn,. Yet this is an
accepted burden under the assumption that the calculation of
t44 modn, is performed only once per key generation. As
described in [4] there is a need for only two key generations
per node. Second, if Alice is malicious and attempts to
instigate key generation with more than one node, calculating
t4modn, for various types of t's (different from one
correspondent to another) will drain her energy. Third, if the
same ID 4 is used over and over again then she is bound
to be ignored. If Alice is trustworthy, she will need to use
her ID 4 only twice for both key generations performed [4].
Finally, if Alice tries to impersonate another user by using
a different ID;, then it will immediately be identified since
(CRA)“modnca = H(na,ID;) will not hold. In this case,
Bob will only have wasted two modular multiplications and
one reception.

Two threat models should be considered in this context.
First, Alice can attempt to drain Bob’s energy by continuously
requesting to establish a key, each time using a different ID.
Since Bob is only required to calculate (C’RA)3 modnca
and compare it with H(n4, ID 4), the computations involved
are two Montgomery multiplications alone. Hence the energy
consumed in each attempt is relatively small. Moreover, the
time Bob spends performing the computations is rather small,
thereby not introducing a significant burden in that sense.
Second, a malicious node, impersonating Alice, can repeatedly
initiate a key establishment process using I D 4. The question
is how can Bob know which messages should be ignored?
A possible solution would be to maintain a list of IDs of
recent nodes that resulted in failed validation (step 2). Bob
will then refrain from proceeding with key generation requests
originating from these nodes. A time-out mechanism should be
employed such that banning of nodes expires after a reasonable
duration of time.

B. The Approached Node Proving It’s Validity

If the first part of the procedure is successful, i.e., Alice has
proven that she is who she claims to be, then Bob will need
to do the same. However, if the first stage does not pass, Bob
assumes that Alice is not valid, and he will discard the rest of
the procedure.

The second stage can be realized in three different ways:
(1) using key transport, (2) using the Elliptic Curve Digital
Signature Algorithm (ECDSA), and (3) using self-certified
fixed key generation [4], [7]. We next describe each of
these methods and discuss their respective advantages and
disadvantages. Moreover, it will be shown that in each of the
cases an ephemeral key is established, which is a primary goal.

1) Key Transport: Bob can validate itself to Alice by using
the RSA key transport method, similar to that described in
section III-A. The random message m, generated by Bob,
was encrypted using Alice’s public key nc4 and e. After
sending the encrypted message ¢, such that £ = m®modna,
Alice can decrypt the message back using her private key,
d4. Eventually, both nodes share the same secret message
m. The remaining bits of message m (excluding the s, least
significant bits that were used in stage A) are utilized to
establish an ephemeral key. For example, if the length of m
is 512 and s, = 100, then there are 412 bits that can be used
for authenticating Bob and establishing the ephemeral secret
key. In this scenario, y will denote the 200 bits that follow z.
The subsequent 212 bits of message m will be labeled z. (The
lengths of the components in the message can be negotiated
between the two parties.)

The following summarizes the key transport procedure
considered:

Step 1 - Bob calculates Sp = 2 modnp, where y is the
next LS B portion of message m.

Step 2 - Bob sends Alice his public key, np, his identi-
fication, I Dp, his certificate (issued by the CA), CRp, and
Sp. As described above, the certificate is the CA’s signature
on the association between ng and IDg. As such, CRg =
[H(nB,IDB)]dCA modnea. Only the CA can create CRp
by using its private key dca.

Step 3 - Alice verifies the following: (CRp)® mod nca .
H(np,IDg). If true, Alice knows that np and IDp are un-
deniably linked. Since e = 3, Alice computes only 2 modular
multiplications. To check the validity of the certificate, Alice
checks the following two equalities

3)
“4)

If true, Alice knows that the corresponding node is indeed
Bob, since only he has the same data, y.The ephemeral key
resulting will be denoted by Kap_ finai = 2, corresponding
to the MSB of message m. To complete the authentication
cycle key confirmation needs to be preformed.

2) Elliptic Curve Digital Signature Algorithm (ECDSA):
Bob can also validate himself to Alice by using ECDSA. The
latter is a method for digital signatures, based on ECC. The

e ?
B = )
(CRp)"modnca = H(np,IDp)
(Sp)“modnp < y



elliptic curve employed by the ECDSA can be the same one
used in all procedures above. The ECDSA variation proposed,
utilizing the components of the message exchanged, m, is:

Step 1 - Bob generates a random number, u, calculates
a public value, a point on the curve V = u - G, where
G is a generating group-point and calculates C, the scalar
representation of point V. Next, he computes L = u~!(y +
dp - C)mod ordG. Finally, he transmits Alice the signature
pair (C, L).

Step 2 - Alice calculates h = L~ 'modordG, q; = y -
hmod ordG, and g2 = C' - hmod ordG. She next obtains the
curve point: P = ¢ - G 4+ g2 - 'V, where np is Bob’s public
key, and calculates C7, the scalar representation of point P.
The algorithm concludes when Alice validates that C' = C.
If the latter holds, Bob is validated.

Step 3 - The ephemeral key resulting will be denoted by
KAB—finat = %, corresponding to the MSB of message m.
To complete the authentication cycle key confirmation needs
to be preformed.

3) Self-Certified DH Fixed Key-Generation: One of the
methods in which Bob can prove his validity to Alice is by
using a self certified method similar to the ephemeral one
described in section III. The ephemeral method can certainly
be used, but when the primary focus is to minimize energy
drainage, a self certified fixed key generation is advisable
since it consists of less computations. We now go back to
the notations used in section II where self certified ephemeral
key generations were described.

A self-certified DH fixed key-generation is achieved by
the following two steps: (1) N; and N; exchange the pairs
(ID;,U;) and (ID;,Uj), respectively, and (2) IV; and N;
generate the session-key,

Kij (generated by N;) = x; X [H(IDJ', U]) X Uj + R]

Kj; (generated by N;) =z; x [H(ID;,U;) x U; +R].

®)
The two keys are expected to be identical, having the value
z; X j X G. (i.e., N; calculates: z; x [H(ID;,U;) x U; +R]
= ﬂ?iX[H(IDj,Uj)XhZ'XG + dXG] = ..’L’iX[H(IDj,Uj)X
hi + d ] x G =z; x z; x G. Similar logic is applied by the
calculations performed at IN;. However, these identities hold
only for valid ID’s. Therefore, to complete the authentication
cycle there is a need for key-confirmation, during which the
two nodes either verify that they share an identical key by
encrypting and decrypting a test value, or by establishing a
communication session and implicitly verify that they share
the same key. Verifying that the keys generated by the two
nodes are equal then establishes their correct identities.

A primary contribution offered by this method of self-
certified fixed key generation lies in the number of exponenti-
ations needed to calculate the value x; x x; X G. As indicated
above, each node (among each pair of nodes) calculates the
value x; X x; X G. Note that the calculations performed by N;
are KU =I; X [H(ID],U]) XU]—FR} =T; XH(IDJ,U])X
U; + z;R. Further note that the calculations have been
separated into two parts. The first is a dynamic scalar by point

multiplication executed in an ad hoc manner (as it contains
the value U;). The second is a scalar by point multiplication
that can be calculated and stored "before" the key-generation
session commences, thereby avoiding the need for a real-time
exponentiation (as it contains information known a priori by
node 4). It is clear that [V; is able to calculate its session-key
by a single online exponentiation (z; x H(ID;,U;)x Uj)
instead of two. Similar considerations apply to N;.

We shall refer to the joint fixed key shared by Alice and
Bob as K4p_temp. In addition, as an integrated part of the
key generation process, if the two generated keys are indeed
identical, authentication is achieved. Therefore, the approached
node has proven its validity to the instigator.

The goal of the entire procedure is to establish a shared
joint secret key. It is highly desirable for that key to be
ephemeral, i.e., two nodes generate a different key for each
session established. Ephemeral key-generation is more secure
and is generally preferred when time and resources permit. A
self-certified DH ephemeral key-generation is also possible,
but would consume three times more energy when compared
to the fixed key case. In order to establish an ephemeral key,
the two nodes can utilize bits in message m, (generated by
Bob) excluding the first = least significant bits. Hence, the
final shared ephemeral key can be defined as

KAB—f'mal = H(KAB—tempa m/)7 (6)

where H is a hash function and m/ is the random message m,
excluding the x least significant bits.

IV. CONCLUSIONS

This paper introduced a public key cryptographic method
for preventing DoS attacks that target the draining of battery
energy in WSN ephemeral key establishment. By exploiting
the asymmetry in RSA signature generation, a robust approach
to minimizing energy usage at the node being attacked has
been proposed. Combining the DoS mitigation with self-
certified ECC-based key generation yielded a highly resource-
efficient security framework. Moreover, the concept developed
can be applied to a wide range of additional security services
that are currently not offered in WSN environments.

REFERENCES

[1] D. W. R. Molva, G. Tsudik, Security and Privacy in Ad-hoc and Sensor
Networks, vol. 3813 of Lecture Notes in Computer Science. 2005.

[2] A. Perrig, J. Stankovic, and D. Wagner, “Security in wireless sensor
networks,” Communications of the ACM, vol. 47, pp. 53-57, June 2004.

[3] O. Arazi, I. Elhanany, D. Rose, and H. Q. B. Arazi, “Self-certified public
key generation on the intel mote 2 sensor network platform,” in Third
Annual IEEE Communications Society Conference on Sensor and Ad Hoc
Communications and Networks, SECON 06, 2006.

[4] O.Arazi and H. Qi, “Load-balanced key establishment methodologies
in wireless sensor networks,” International Journal of Sensor Networks,
IJSN, vol. 1, April 2006.

[51 A. M. Eskicioglu and E. J. Delp, “A key transport protocol based on
secret sharing applications to information security,” IEEE Transactions
on Consumer Electronics, vol. 48, pp. 816-824, Novemeber 2002.

[6] R.L.Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120-126, 1978.

[7]1 B. Arazi, “Certification of dl/ec keys,” in Proc. of the IEEE P1363 Study
Group for Future Public-Key Cryptography Standards, May 1999.



