
Automatic Generation of Certifiable Aerospace

Communication Software

Johann Schumann and Ewen Denney
RIACS / NASA Ames, Moffett Field, CA 94035

{schumann|edenney}@email.arc.nasa.gov

The need for reliable, secure and effective methods for communication in
the aerospace domain is becoming increasingly important. Communication
between a spacecraft and the ground station is central to all space missions,
and an optimal design and implementation of the communication subsys-
tems is an important prerequisite for a successful mission, since control of
the spacecraft and the effective downlink of mission or science data clearly
depend on reliable communication. This is especially the case for deep-space
missions, where bandwidth is at a premium.

Also, advanced techniques for air traffic control require digital communi-
cation both between the aircraft and the control tower and between multiple
aircraft in order to enable a smooth and safe control of the aircraft in a dense
national airspace.

Furthermore, heightened needs for operations security add substantial
complexity to the communication system requirements. A malicious attack
or a simple flaw in the code can put human life at risk or jeopardize the
mission.

Although secure communication protocols are in wide use, history has
shown that many errors and vulnerabilities do exist and have been actively
exploited. Security flaws can be introduced (or fail to be detected) during
all stages of the software development cycle and may include
Misunderstanding of protocol requirements: the wrong protocol may be used
for a specific application, or specific requirements might be violated (e.g.,
the existence of a trusted key server).
Weak cryptography : often, cryptographic algorithms are used that are much
weaker than originally intended. Thus, attackers can hack or reverse engi-
neer the code to expose vulnerabilities. Sometimes, proprietary encoding
schemes are much weaker than published and proven protocols and algo-
rithms.

1



Coding errors are a major source of vulnerabilities. Most security warnings
regarding software like the Windows OS or Internet browsers have been
caused by implementation errors like buffer overflow, uninitialized variables,
deadlocks, etc.
Errors in protocol optimization: optimizing a complex, layered protocol to-
ward maximal performance can lead to hard-to-detect errors and security
vulnerabilities.
Errors during testing and deployment : a bad or incomplete selection of test
cases will not exhibit flaws in the protocol. Incorrect testing and deployment
procedures can thus lead to serious problems.

It is our contention that reliable and secure communication software can
best be developed with a unified approach throughout the entire software
life-cycle. We have developed a set of tools that facilitate a unified end-
to-end approach to the design, analysis, implementation, and certification
of communication software. Our tools are based upon rigorous logical and
mathematical foundations, and are capable of automatically generating high
quality communication (protocol execution) software from a high-level model
using certifiable program synthesis.

As a modeling framework, we use UML, in particular sequence diagrams
or scenarios to specify the temporal behavior of the protocol as a sequence of
messages between participants (communication partners, key servers, etc.).
In order to formalize a deeper semantic content, we augment the sequence
diagrams with formal logical annotations in OCL (UML’s Object Constraint
Language).

The code is automatically generated from this model, and undergoes an
automatic, tamper-proof certification process that provides explicit guar-
antees about important reliability and security properties, as well as the
absence of implementation and design errors. These properties include ab-
sence of buffer-overflow errors, guarantees for variable initialization and cor-
rect usage (i.e., all required data are packed/unpacked and transmitted in
the right way), and the correct use of encryption algorithms, although we
do not analyze the mathematical properties of such algorithms. Security
authentication properties are expressed using the well-known BAN logic.
Although this logic is relatively weak, it is amenable to automatic process-
ing and, as our tools can produce readable proofs, allows protocol designers
to quickly find and fix flaws in a protocol.

2


