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Problem

Common Criteria Evaluation Dilemma

m Common Criteria Security Evaluations (CCSE)
Demand exceeding supply of Evaluators

O Labor intensive CCSE process
= Effort in Weeks and Calendar time in Months

O National Information Assurance Acquisition Policy (NSTISSP #11) JUly 2002
mandate for security related software evaluation

O Limited number of Testing Labs
0 And then there are all the software updates...
m How can this situation be alleviated?
O Relax policy & allow lesser/non-evaluated systems
O Increase supply of Evaluators
O Increase the productivity of Evaluators 8
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Research Goals

Quicken and Clarify CCSE

m Improve Efficiency of CCSE Process through
Better Navigation

00 Reduce time in navigating the documentation
(shorten the conceptual distances)

0O Reduce effort and time by identifying failing
evaluations early

O Reduce time for key time consuming activities
m Improve Effectiveness of CCSE Process through
Better Visibility
O Increase confidence of evaluations
O Better decisions
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The SIAVE Research Vision

m Vendor Uses CCTool to Generate ST/PP

m ST/PP Used to Generate TOE Template in
Vendor’'s Documentation Environment

m TOE Template Populated and
Updated to form the Revised TOE

m Revised TOE Transformed into
Software Life Cycle Objects that
Populate the Database along with Dependency
Relationships

m CC Evaluator Analyzes and Navigates Security
Dependency Database in an Immersive Virtual
Environment
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[= — Evolution of SIAVE

Technical Approach

m Employ Complementary Technologies
O Software Impact Analysis (dependency based)
O Software Visualization / Virtual Environments
m Two Phase Approach- Evaluator then Vendor
m Phase 1: Automation for Evaluator’s Tasks
O Security Impacts Model to Analyze Relevant Dependencies
O Visual Environment for Evaluators
m Phase 2. Automate TOE capture for Vendors
O Build on CCTool to derive TOE templates
O Start with common Vendor Documentation Tools

O Templates & Parsers for TOE Capture
= ST/PP derived TOE Template Generation
m Capture & Revise TOE in Vendor friendly tools
= MS Word to XML translation & DBMS population
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|- — Visualization and Navigation

866 Software Visualizer
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Title: pg
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Description:

The system should be designed to maintain the integrity of all
communication that occur between the system and intended
external system
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Basic Architecture
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Evaluation Assurance Levels

EAL1- Functionally Tested: Basic assurance of security by
analyzing functional specifications and guidance.

EAL2- Structurally Tested: Moderate level of assurance by
EAL1 plus high-level design and independent testing of the
security functions for vulnerability assessment.

EAL3- Methodically Tested and Checked: Provides moderate
level of assurance by including EAL2 plus evidence of sound
development practices.

EAL4— Methodically Designed, Tested and Reviewed:
Moderate/high level of assurance - highest level economically
feasible to retrofit an existing product line.

EAL5- Semiformally Designed and Tested: Provides security
engineering based upon rigorous commercial development
practices to ensure resistance to attackers.

EAL6- Semiformally Verified Design and Tested: High
assurance through security engineering techniques in a
rigorous development environment to reduce risks.

EAL7- Formally Verified Design and Tested: Highest assurance
level - requires formal design verification.
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tatus and Next Steps

m Completed two Phases of prototype of
Evaluator’s Visual Environment

m Populated SIAVE with Initial Test TOE

m Refining VE used to Analyze and Navigate TOE
artifacts during Evaluation

m Next frontier is to introduce Formalism

m Moving into EAL 5-7 with formal specifications

O Build on Lamsweerde’s constructive approach to
the modeling, specification, and analysis of
application-specific security requirements

O Consider Specifying Systems in B or VDM++

m Engaging Testing Lab to use live TOE and
explore SBIR possibilities
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Visual Demo
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