Tolerating Change in a
Secure Environment:
A Visual Perspective

Shawn Bohner

Virginia Tech
May 15, 2007
e
Problem

Common Criteria Evaluation Dilemma

m Common Criteria Security Evaluations (CCSE)
Demand exceeding supply of Evaluators

O Labor intensive CCSE process
= Effort in Weeks and Calendar time in Months

O National Information Assurance Acquisition Policy (NSTISSP #11) JUly 2002
mandate for security related software evaluation

O Limited number of Testing Labs
0 And then there are all the software updates...
m How can this situation be alleviated?
O Relax policy & allow lesser/non-evaluated systems
O Increase supply of Evaluators
O Increase the productivity of Evaluators 8

Wﬁm

Research Goals

Quicken and Clarify CCSE

m Improve Efficiency of CCSE Process through
Better Navigation

00 Reduce time in navigating the documentation
(shorten the conceptual distances)

0O Reduce effort and time by identifying failing
evaluations early

O Reduce time for key time consuming activities
m Improve Effectiveness of CCSE Process through
Better Visibility
O Increase confidence of evaluations
O Better decisions

Viginia

m’lﬁh

i | _SIAVE
CCSE via Security Impact Analysis

Virtual Environment

NIST/NIAAP’s CCTool Application
SIAVE Application

Common
Criteria

Evaluation

Security
Objectives

m‘&dl Shawn Bohner and Denis Gracanin and Funded by Virginia Commonwealth Grant

The SIAVE Research Vision

m Vendor Uses CCTool to Generate ST/PP

m ST/PP Used to Generate TOE Template in
Vendor’'s Documentation Environment

m TOE Template Populated and
Updated to form the Revised TOE

m Revised TOE Transformed into
Software Life Cycle Objects that
Populate the Database along with Dependency
Relationships

m CC Evaluator Analyzes and Navigates Security
Dependency Database in an Immersive Virtual
Environment

VO

SIAVE

POpUIate TOE Security

Target/
emplate Protection

Profile

Parsers

Dependency
Analyzer

Vendor Preparation Environment ' CC Evaluator’s Environment

m’Edl Shawn Bohner and Denis Gracanin (Funded by Virginia Commonwealth Grant)

[= — Evolution of SIAVE

Technical Approach

m Employ Complementary Technologies
O Software Impact Analysis (dependency based)
O Software Visualization / Virtual Environments
m Two Phase Approach- Evaluator then Vendor
m Phase 1: Automation for Evaluator’s Tasks
O Security Impacts Model to Analyze Relevant Dependencies
O Visual Environment for Evaluators
m Phase 2. Automate TOE capture for Vendors
O Build on CCTool to derive TOE templates
O Start with common Vendor Documentation Tools

O Templates & Parsers for TOE Capture
= ST/PP derived TOE Template Generation
m Capture & Revise TOE in Vendor friendly tools
= MS Word to XML translation & DBMS population

1) SIAVEDTSV3 doc - Microsotword T O T €M plate

! Fle Edit View Insert Format Tools Table Window Help
L e e e e S B e

j
3

" Architectural ID: (A D (A1])

7 Architectural Component Name: Contraller YSV\?RVL‘?ED
Component Description: (CArch Description [The controller servlet, is the main servlet of the
struts web application framework. k}'stemD
Architectural Artifact:

= {0 Arch_Artifact() Arch_Artifacte) =
: Dependency Table (containing Architectural elements):

i {4 RelatedArchElements|]

Related Architectural Components Dependency Type
{4 RelatedElementID() RelatedElementID) {# RelationTypel RelationTyper)
RelatedArchElementsik

Traceabilitv Table (containing Requirement Elements):

L_n It RelatedRquIanemsf

Connected Requirements Traceability Type
(4 RelatedElementID(R 2] RelatedElementID) {« RelationType(Tnt eracts) RelationTypet) Rl
{4 RelatedElementID(R 4) RelatedElementID) mpl ements ;
2 {4 RelatedElementID[R 7] RelatedElementID®) (s RelatonTyoe[Tmplements 3
=@z w<| [I | @ | =

Page 9 Sec 1 917 At-387 Ln 12 Col 35 REC TRK EXT English (U.5 EF 4

|- — Visualization and Navigation

866 Software Visualizer

v v

n
' Co—'e
L y

=
-

Name: ntegrity Requirements [Desighl strength Threshold: | ¢ (=] 14irl 62
Title: pg

- [

Description:

The system should be designed to maintain the integrity of all
communication that occur between the system and intended
external system

Transitive Limit: '€ &<+ 100

(_Apply)

|

Basic Architecture

SIAVE Prototype

CCTool

TOE Conditioning
& Capture Parsers

Dependency Analyzer

Dependency IA Model
Browser(s) XML/VRML

Dependency Database

Web and File System

y

'TOE Conditioning & Capture

§

E

Evaluation Assurance Levels

EAL1- Functionally Tested: Basic assurance of security by
analyzing functional specifications and guidance.

EAL2- Structurally Tested: Moderate level of assurance by
EAL1 plus high-level design and independent testing of the
security functions for vulnerability assessment.

EAL3- Methodically Tested and Checked: Provides moderate
level of assurance by including EAL2 plus evidence of sound
development practices.

EAL4— Methodically Designed, Tested and Reviewed:
Moderate/high level of assurance - highest level economically
feasible to retrofit an existing product line.

EAL5- Semiformally Designed and Tested: Provides security
engineering based upon rigorous commercial development
practices to ensure resistance to attackers.

EAL6- Semiformally Verified Design and Tested: High
assurance through security engineering techniques in a
rigorous development environment to reduce risks.

EAL7- Formally Verified Design and Tested: Highest assurance
level - requires formal design verification.

[=—

S

tatus and Next Steps

m Completed two Phases of prototype of
Evaluator’s Visual Environment

m Populated SIAVE with Initial Test TOE

m Refining VE used to Analyze and Navigate TOE
artifacts during Evaluation

m Next frontier is to introduce Formalism

m Moving into EAL 5-7 with formal specifications

O Build on Lamsweerde’s constructive approach to
the modeling, specification, and analysis of
application-specific security requirements

O Consider Specifying Systems in B or VDM++

m Engaging Testing Lab to use live TOE and
explore SBIR possibilities

Wﬁm

Visual Demo

Stepl: Securty | Step 2 Metaphor anpaumm|

il Ad

| owut |

B A
L

ok | Concel bl Help

