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2= Goals of Presentation

« Summarize the epidemiological models of
worm spread in the Internet

* Introduce Random Graphs as models of
the Internet

* Propose a natural model of worm spread
using Random Graphs

 Demonstrate quantitative results showing
this model may be appropriate
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= Computer Worms

» Computing a self-replicating program able to
propagate itself across a network, typically
having a detrimental effect.

 The name 'worm' comes from The
Shockwave Rider, a science fiction novel
published in 1975 by John Brunner.

* Researchers John F Shoch and John A Hupp
of Xerox PARC chose the name in a paper
published in 1982; The Worm Programs,
Comm ACM, 25(3):172-180, 1982), and it has
since been widely adopted.
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= Epidemic Models

+ Epidemiology: The study
of the spread of disease in

populations.
» Diseases may spread

quickly and then die out Suscepable ]

(Ebola) or remain Y

endemic within a

population (Chicken Pox) Susceptible Infected Susceptible
» Populations can be N

modeled in a number of

Susceptible Infected Recovered
ways:

e “SI”, “SIS” or “SIR” models
are most common.
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= Mathematical Epidemiology

» Classical Mathematical Epidemiology Uses 3
Key Parameters in SIS/SIR Models:

— R,: The number of secondary infections that occur
when one infective agent is introduced into a
population.

— o(t): The average number of effective contacts an
individual has during his/her infected period.

— R(t) : The average number of secondary infections
produced by an individual during his/her infected
period.

* In general, epidemic is only possible if Ry > 1.
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= Scale-Free Networks

» Agraph G=(V,E) is scale
free if the number of vertices
with degree d follows an
inverse power law. That is:

e n(d) = kid* i

— n(d) is the number of «
vertices with degree d. 2

— kis a constant of
proportionality, and

— ais the scaling parameter.

+ Scale-free graphs have
gained popularity in recent
years.

» Examples: The World Wide
Web, Human Sexual
Contacts, Protein-Protein
Interaction Networks.
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+ Worm Models with Epidemiology
* R. Pastor-Satorras and A. sonan o Mo T e rem
Vespigani studied the spread ED|p
of worms in Internet-like : e |
networks using classical § 2o0eee -
mathematical epidemiology. |
— Differential Equation Model senee -
of Infection Spread 00 “:Wmfijic) 3?523
— Mean-Field Theory
Approximations ” —
» They show that for certain ® /
scale-free networks with i /

scaling parameter < 3,

epidemics will occur for all a :
diseases with R, > 1. . /

Number Infected
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PENNSTATE OK, this model “looks” good. Why
4 i ?

« Three reasons to search for a different model:
— These models assume a completely mixed population.

— Classical mathematical epidemiology assumes a fluid-like
behavior of individuals.

— R. Pastor-Satorras and A. Vespigani were studying general
scale-free networks, not computer networks specifically.
+ Two dangers to note:

— In the absence of ad hoc mesh networks, computers do not
mix.

— The effective R, is highly dependent on the initial infection
position.




Graphs and Random Graphs

« A graph G=(V,E) is said to have a giant component H
if H is a subgraph and contains a majority of the
vertices of G.

* A random graph is a misnomer. A random graph is a
tuple (T',p), where T is a set of graphs and p is an
appropriately defined probability measure on a sigma
algebra of T.

» The most widely studied random graph family is
I'(n,p), where each graph in T has n vertices when
any graph G is chosen from T the probability that
there is an edge between two arbitrarily chosen
vertices is p.

» These are the Erdés-Renyi Random Graphs.

Random Graph Model of SF Graphs

 Aiello et al. have formulated a random graph
model of SF graphs.

* Let I'(a,y) be the collection of graphs whose
degree distribution follows the curve
n(d)=| exp(a)/d¥].

— Here | x| denotes the greatest integer lower bound
for x.

— Aiello et al. have shown that this definition is
mathematically sufficient and that a reasonable
probability measure can be defined.

* In this model, a (roughly) controls the size of
the graph while y controls the scaling of the
graph.

10




Relation to Epidemic Models

* Lemma [Griffin & Brooks 2006]: If G is an
element of I'(a,y), and vertices of G are
uniformly randomly kept with probability
O<p=1 to produce G’, then a.s. G’ has the
same properties as G.

* Theorem [Griffin & Brooks 2006]: For any
infection in graph G&I'(a,y) with y>2, and with
nodes having susceptibility probability p, then
for all time

1"

Infection Potential

* Theorem [Griffin & Brooks 2006]: If 2<y<y,,
and for any infectious agent with infection
probability p, a.s. lim,_, ., i(t) = p. Where i(t) is
the proportion of infected nodes.

» This result is particularly interesting:

— Often the affects of Internet worms have been
blamed on the monoculture of Microsoft products.

— This theorem suggests that even in the absence of
a network monoculture, for appropriate Internet
structures, 100% infection would occur among the
susceptible nodes.
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= Rate of Infection

* Theorem [Griffin & Brooks]:
Suppose that the rate of
infection is constant, then the
time required to achieve total
infection is a.s. O(log|G|).

+ Suppose that the infection rate
is r(t), then: v Mo

I(t) = exp( f Otr(t)dt) D

* For certain r(t) we can obtain 7
an “S” curve matching the : /
data. s —

 This gives a natural model of i
infection rate that matches the T
given data and does not S/
appeal to continuous mixing
models.
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= Comparison of Approaches

*  When we try a model: —
r(t) = B, exp( B,(t - y)z)

* We obtain:

* The model is seen to be imperfect
because the true “logarithmic rate”
does have hump, but it is probably
not Gaussian in nature.

* G/B puts the diameter of this
monitored network at ~13--this is a
bit smaller than most estimates of i
the diameter of the Internet. ’ : .
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Infection Countermeasures

Theorem [Griffin & Brooks 2006]: Centralized
patch distribution runs in O(|G|), while decentralized
“‘white worms” can inoculate machines in time
O(log|G|) assuming a constant rate of transmission.

This theorem was “experimentally verified” by Chen
and Carley (2005).

What does this mean?
— Centralized patch distribution is inefficient but...
— Centralized patch distribution is safe.
— Inefficiency is the cost of safety.
Here is a real tradeoff: either we distribute patches
quickly and prevent global infection at the risk of
creating patch-based errors or we live with our
current security model.
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Conclusions

Infectious agents in computer networks can be
modeled using natural “random graph” models.
These models are more appropriate than continuous
mixing models.

For scale-free random graph models, total infection is
a.s. whenever y<y,, hence infections are a function of
network structure as much as pathogen.

Infection rates can be well described using the
random graph model.

There is a natural trade-off between security
countermeasures efficiency and safety. This confirms
experimental results presented by Chen and Carley.
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