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Goals of Presentation

• Summarize the epidemiological models of
worm spread in the Internet

• Introduce Random Graphs as models of
the Internet

• Propose a natural model of worm spread
using Random Graphs

• Demonstrate quantitative results showing
this model may be appropriate
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Computer Worms

•• Computing a self-replicating program able toComputing a self-replicating program able to
propagate itself across a network, typicallypropagate itself across a network, typically
having a detrimental effect.having a detrimental effect.

• The name 'worm' comes from The
Shockwave Rider, a science fiction novel
published in 1975 by John Brunner.

• Researchers John F Shoch and John A Hupp
of Xerox PARC chose the name in a paper
published in 1982; The Worm Programs,
Comm ACM, 25(3):172-180, 1982), and it has
since been widely adopted.
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Epidemic Models

• Epidemiology: The study
of the spread of disease in
populations.

• Diseases may spread
quickly and then die out
(Ebola) or remain
endemic within a
population (Chicken Pox)

• Populations can be
modeled in a number of
ways:

• “SI”, “SIS” or “SIR” models
are most common.
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Mathematical Epidemiology

• Classical Mathematical Epidemiology Uses 3
Key Parameters in SIS/SIR Models:
– R0: The number of secondary infections that occur

when one infective agent is introduced into a
population.

– σ(t): The average number of effective contacts an
individual has during his/her infected period.

– R(t) : The average number of secondary infections
produced by an individual during his/her infected
period.

• In general, epidemic is only possible if R0 > 1.
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Scale-Free Networks

• A graph G=(V,E) is scale
free if the number of vertices
with degree d follows an
inverse power law. That is:

• n(d) = k/dα

– n(d) is the number of
vertices with degree d.

– k is a constant of
proportionality, and

– α is the scaling parameter.
• Scale-free graphs have

gained popularity in recent
years.

• Examples: The World Wide
Web, Human Sexual
Contacts, Protein-Protein
Interaction Networks.



4

7

Worm Models with Epidemiology

• R. Pastor-Satorras and A.
Vespigani studied the spread
of worms in Internet-like
networks using classical
mathematical epidemiology.
– Differential Equation Model

of Infection Spread
– Mean-Field Theory

Approximations
• They show that for certain

scale-free networks with
scaling parameter < 3,
epidemics will occur for all
diseases with R0 > 1.
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OK, this model “looks” good. Why
not use it?

• Three reasons to search for a different model:
– These models assume a completely mixed population.
– Classical mathematical epidemiology assumes a fluid-like

behavior of individuals.
– R. Pastor-Satorras and A. Vespigani were studying general

scale-free networks, not computer networks specifically.

• Two dangers to note:
– In the absence of ad hoc mesh networks, computers do not

mix.
– The effective R0 is highly dependent on the initial infection

position.
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Graphs and Random Graphs

• A graph G=(V,E) is said to have a giant component H
if H is a subgraph and contains a majority of the
vertices of G.

• A random graph is a misnomer. A random graph is a
tuple (Γ,p), where Γ is a set of graphs and p is an
appropriately defined probability measure on a sigma
algebra of Γ.

• The most widely studied random graph family is
Γ(n,p), where each graph in Γ has n vertices when
any graph G is chosen from Γ the probability that
there is an edge between two arbitrarily chosen
vertices is p.

• These are the Erdös-Renyi Random Graphs.
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Random Graph Model of SF Graphs

• Aiello et al. have formulated a random graph
model of SF graphs.

• Let Γ(α,γ) be the collection of graphs whose
degree distribution follows the curve
n(d)=exp(α)/dγ.
– Here x denotes the greatest integer lower bound

for x.
– Aiello et al. have shown that this definition is

mathematically sufficient and that a reasonable
probability measure can be defined.

• In this model, α (roughly) controls the size of
the graph while γ controls the scaling of the
graph.
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Relation to Epidemic Models

• Lemma [Griffin & Brooks 2006]: If G is an
element of Γ(α,γ), and vertices of G are
uniformly randomly kept with probability
0<p≤1 to produce G’, then a.s. G’ has the
same properties as G.

• Theorem [Griffin & Brooks 2006]: For any
infection in graph G∈Γ(α,γ) with γ>2, and with
nodes having susceptibility probability p, then
for all time
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Infection Potential

• Theorem [Griffin & Brooks 2006]: If 2<γ<γ0,
and for any infectious agent with infection
probability p, a.s. limt→∞ i(t) = p. Where i(t) is
the proportion of infected nodes.

• This result is particularly interesting:
– Often the affects of Internet worms have been

blamed on the monoculture of Microsoft products.
– This theorem suggests that even in the absence of

a network monoculture, for appropriate Internet
structures, 100% infection would occur among the
susceptible nodes.
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Rate of Infection

• Theorem [Griffin & Brooks]:
Suppose that the rate of
infection is constant, then the
time required to achieve total
infection is a.s. O(log|G|).

• Suppose that the infection rate
is r(t), then:

• For certain r(t) we can obtain
an “S” curve matching the
data.

• This gives a natural model of
infection rate that matches the
given data and does not
appeal to continuous mixing
models.
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Comparison of Approaches

• When we try a model:

• We obtain:

• The model is seen to be imperfect
because the true “logarithmic rate”
does have hump, but it is probably
not Gaussian in nature.

• G/B puts the diameter of this
monitored network at ~13--this is a
bit smaller than most estimates of
the diameter of the Internet.

r(t) = !1 exp !2 (t " µ)
2( )
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Infection Countermeasures
• Theorem [Griffin & Brooks 2006]: Centralized

patch distribution runs in O(|G|), while decentralized
“white worms” can inoculate machines in time
O(log|G|) assuming a constant rate of transmission.

• This theorem was “experimentally verified” by Chen
and Carley (2005).

• What does this mean?
– Centralized patch distribution is inefficient but…
– Centralized patch distribution is safe.
– Inefficiency is the cost of safety.

• Here is a real tradeoff: either we distribute patches
quickly and prevent global infection at the risk of
creating patch-based errors or we live with our
current security model.
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Conclusions

• Infectious agents in computer networks can be
modeled using natural “random graph” models.

• These models are more appropriate than continuous
mixing models.

• For scale-free random graph models, total infection is
a.s. whenever γ<γ0, hence infections are a function of
network structure as much as pathogen.

• Infection rates can be well described using the
random graph model.

• There is a natural trade-off between security
countermeasures efficiency and safety. This confirms
experimental results presented by Chen and Carley.


