
Automatic Generation of
Certifiable Space Communication

Software

Ewen Denney, RIACS / NASA Ames

Johann Schumann, RIACS / NASA Ames

Secure Communication — Overview

Security is a multi-headed beast...

• Security of space communication protocols (software)

• Tool workflow

• The individual tools

• Conclusions

Introduction

Software for secure communications can become insecure due to flaws

during any phase of the software life cycle

• Design

– wrong algorithm or protocol

– wrong requirements

• Implementation

– buffer overrun, uninitialized variable, . . .

– sleeper codes

• Verification and Validation

– wrong tests

– insufficient test coverage

• Deployment

– wrong code (e.g., disabled crypto)

– code tampering

Tool-supported Design and Analysis Process

Software Process and the V-shape

Requirements:

• iterative process

• fast turnaround

• security analysis

• reliable, secure code

• support verification

• support validation

• support certification

Our Tool Chain

Tools to support

• high-level modeling

• automatic security analysis

• generation of designs

• autocoding

• safety-certification support

• Automatic generation of security

cases and documentation

Example Protocol Specification

• Authentication of communication between satellite S and ground G.

• A key server K on the ground is used

• A Yahalom-style protocol shall be used

Specification of Protocol using Sequence Diagrams

• describes interaction between the various (sub-)systems

• annotations with actions and logical conditions

A number of different scenarios (sequence diagrams) comprise the

specification of the protocol

Specification of Protocol using Sequence Diagrams

• another scenario

• satellite already has fresh key

A number of different scenarios (sequence diagrams) comprise the

specification of the protocol

Statechart Synthesis: Annotations

<features> <type> SAT_RXTX

<attributes>

key_is_valid : Boolean;

key_recd : Boolean;

</attributes>

<invariants>

context SAT_RXTX:: msg4(...) : Void

post: key_recd = true;

context SAT_RXTX:: rqenc(...) : Void

pre: key_recd = true;

Annotations are used to specify conditions on the state of the

subsystems and control a correct and consistent merge of the sequence

diagrams.

Automatic Synthesis of Statecharts

• merge of SDs

• conflict detection

• loop detection

• introduction of hierarchy

• can be used for autocoding

Security Analysis

A formal analysis is necessary to ensure that the protocol is working

correctly, i.e., it provides a secure session key and it does not

compromise any information.

• We use BAN (Burrows, Abadi, Needham) logic

• Modal logic to express security properties

– S|≡ K|≡ fresh Kgs (satellite “believes” that the keys coming from

the key server are valid (fresh)
– G, S|≡ Kgs (ground and satellite “believe” they have the right

session key)

• BAN logic relatively weak (e.g., cannot model confidentiality) but

well-used in design/modeling of security software

BAN representation of our protocol

A BAN logic specification of the protocol can be extracted from the

sequence diagrams and annotations.

1 G =⇒ S send tel(Ng)

2 S =⇒ K {Ng, Ns}(Ksk)

3 K =⇒ G {Ksg,#Ksg, Ng, Ns, S|∼ Ng}(Kgk), {Ksg}(Ksk)

4 G =⇒ S {Ksg}(Ksk), {Ns,Ksg, S|≡ #Ksg}(Ksk)

Properties that must hold after execution of the protocol:

• S|≡ K|≡ fresh Kgs: S “believes” that the keys coming from the key

server (K) are valid (fresh)

• G, S|≡ Kgs: ground and satellite “believe” they have the right session

key

• obligations 3. . . 12 ommitted

Our tool PIL-SETHEO uses an automated theorem prover to automatically

process all proof obligations and produce human-readable proofs

Protocol Analysis: Example Proof

Proof generated and typeset by PIL-SETHEO

Conclusions and Future Work

• We presented a loosely coupled set of tools that can support the

design and implementation of secure communication protocols

• Tools provide assurance with respect to security properties and

software safety

• Additional tools for security analysis, e.g., Model Checking, will

increase level of assurance

• Combination with other modeling frameworks (e.g., UMLSec)

• Integration of correct optimization of Protocols

• Tight integration of tools into SW development tool chain and with

COTS tools

