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ABSTRACT 

Nonlinear dynamics and graph theory may provide a theorem-

based path to improve design security and aid detection of 

anomalous events in cyber applications. Using side-channel 

information such as power taken from underlying computer 

components and analyzing noisy data such as timing, we ask the 

question of whether such data can reveal anomalous activity or 

verify the changing dynamics of an underlying computer system. 

Takens' theorem in nonlinear dynamics allows reconstruction of 

topologically invariant, time-delay-embedding states from the 

computer dynamics in a sufficiently high-dimensional space. The 

resultant dynamical states are vertices, and the state-to-state 

transitions are edges in a graph. Graph theorems guarantee 

topologically invariant measures to quantify the dynamical 

changes, based on the applications that are executing. This paper 

highlights recent applications of the phase-space analysis 

technique in the non-cyber realm (forewarning of biomedical 

events and equipment failures), and proposes new applications 

that would bolster cyber event detection.   

Categories and Subject Descriptors 

G.2.2 [Mathematics of Computing]: Discrete mathematics – 

graph theory J.2 [Computer Applications]: Physical Sciences 

and Engineering – engineering, physics, mathematics. K.6.5 

[Management of Computing and Information Systems]: 

Security and Protection – invasive software, unauthorized access.  

General Terms 

Measurement, Performance, Design, Reliability, Experimentation, 

Security. 

Keywords 

Cyber anomaly detection, phasespace analysis, nonlinear 

dynamics, graph theory, power measurement. 

1. INTRODUCTION 
Recently, computers have been modeled using nonlinear 

dynamics-based measurement frameworks [1-2]. Appealing to a 

physics-based view of the system, results indicate that the 

dynamics of a computer can be described by an iterated map 

  

 

 

 

 

representing the software and hardware. Based upon time-series 

data from simple programs running on common computers, 

researchers have used delay-coordinate embedding [3] to study 

the associated dynamics and found strong indications of a low-

dimensional attractor in the dynamics of simple programs, as well 

as showing the first experimental evidence of chaos in real 

computer hardware [1].  

Side-channel information (particularly differential power analysis) 

has been used extensively for adversarial compromise of 

algorithms and has allowed exploitation of cryptographic 

operations implemented in hardware [4-6]. As a novel approach 

for detecting cyber anomalies, we consider whether side-channel 

power information sampled from various computer components 

(external aggregate AC power, internal aggregate DC power, 

motherboard, CPU, disk drive, memory, network interface cards, 

and graphics cards) can be used to characterize normal operational 

behavior in cyber systems. Given historical success for using 

theorem-based, data-driven phase-space analysis techniques in 

biomedical and industrial applications [7-8], we postulate that 

side-channel characterization from non-invasive sensors may 

provide indicators for predicting failures in physical devices and 

detecting execution of anomalous software.   

In this paper, Section 2 describes the technical approach for 

phase-space analysis of time serial, process-indicative data. 

Section 3 presents typical results for diverse, non-cyber 

applications. Section 4 discusses the proposed application to 

cyber events, for which the necessary dynamical data are presently 

unavailable (e.g., timing data, side-channel power). Section 5 

discusses the conclusions for event detection via dynamical 

variability. 

2. PHASE-SPACE ANALYSIS APPROACH 
Dynamical systems are mathematical models describing real-

world phenomena such as weather systems, fluid flow, population 

growth, and mechanical motion. Dynamical systems are defined 

by a fixed rule that describes time-dependent behavior at a point 

in some geometrical shape. At any given time, the dynamical 

system is described by some real-valued vector state that is a point 

in a state space that characterizes transitions from one state to 

another.  Our analysis technique combines dynamical systems 

theory with standard time series analysis approaches. We start 

with a process-indicative signal, e, that is sampled at equal time 

intervals, , starting at an initial time, t0, yielding a time-serial set 

of N points (cutset), ei = e(t0 + i). The garbage-in-garbage-out 

syndrome is avoided by rejecting data that fails any of the 

following tests: proper number of data points; intervals with 

unchanged amplitude; saturation at high or low limits; consistent 

amplitude across datasets; adequate sampling rate; excessive 

periodic content; and excessive noise. 
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Artifacts are removed with a zero-phase quadratic filter that 

performs better than conventional filters. This filter fits a parabola 

in the least-squares sense over a moving window of 2w+1 data 

points. The central point of the fit estimates the low-frequency 

artifact, fi. The residual (artifact-filtered) signal is then, gi = ei – fi, 

and has essentially no low-frequency artifact activity. The gi-data 

are symbolized into S discrete values, si, namely 0  si  S – 1. 

Equiprobable symbols are formed by ordering all of the baseline 

data from the smallest to largest value. The first N/S  of these 

ordered values correspond to the first symbol, 0; data values (N/S) 

+ 1 through 2N/S correspond to the second symbol, 1, and so on. 

Uniform symbols, si = INT[S (gi - gn)/(gx - gn)], use gx and gn, 

which are the maximum and minimum in the gi-data, respectively. 

One can choose either uniform or equiprobable symbols; 

experience to date favors the use of uniform symbols. 

A time-delay vector, y(i) = [si, si+L , . . . , si+(d–1)L], uniquely 

defines a dynamical state by base-S arithmetic. Thus, the 

dynamical domain is partitioned into Sd bins. Several channels of 

data add more information for: y(i) = [si(1), si+L(1) , . . . , si+(d–

1)L(1), …, si(C), si+L(C) , . . . , si+(d–1)L(C)]. Here, s(k) denotes 

symbols from the k-th channel up to C channels with a total of SCd  

dynamical states. Here, L is the time delay, and d is the dimension 

of the time-delay space on the basis of Takens’ theorem [3]. 

Figure 1 summarizes the major points of the approach.  

 

Figure 1. Phase-Space Analysis from Time Series Data 

Takens’ theorem [3] provides a diffeomorphism that guarantees 

topology (connectivity) and directivity, but not a density of states. 

Consequently, the analysis tabulates the unique, time-delay states 

as nodes, y(i). The process flow, y(i)  y(i + M), is also extracted 

as directed, state-to state links. The nodes and links form what 

mathematicians call a “graph.” Graph theorems guarantee 

topologically-invariant measures. The present work uses four 

dissimilarity measures between graphs from different cutsets: (1) 

nodes in A but not in B; (2) nodes in B but not in A; (3) links in A 

but not in B; and (4) links in B but not in A. These dissimilarity 

measures sum the absolute value of differences, providing better 

discrimination then traditional nonlinear measures, which are 

based on a difference of averages. For each A-B comparison, the 

dissimilarity measure is normalized to the total number of nodes 

(links) in A (for A not in B) or in B (for B not in A). 

Normalized measures, Ui(V) = |Vi – V |/, account for the 

disparate range and variability of the dissimilarities. The mean 

dissimilarity measure, V , is obtained by comparison among the 

B(B–1)/2 unique combinations of the B base case segments, with a 

corresponding sample standard deviation, . Each contiguous, 

non-overlapping test case is subsequently compared to each of the 

B base case intervals to obtain the corresponding average 

dissimilarity, Vi, of the i-th analysis window for each dissimilarity 

measure. Ui is then the number of standard deviations that the i-th 

test case (unknown dynamics) deviates from the base case 

(nominal-state). Classification of dynamical changes uses several 

successive occurrences of Ui above a threshold to provide indicate 

a significant change in the dynamics of the process.  Present 

applications of this approach include event (anomaly) detection 

and forewarning, which we discuss further in section 3. 

Table 1 summarizes the trainable parameters, along with the 

corresponding trade-offs between small and large values of those 

parameters. For example, the number of data points in a cutset is a 

trade-off between inadequate sampling of the dynamics at small N 

(thus giving scarce statistics) against excessive blurring of 

dynamical change at large N. We implement our analysis in 

research-class FORTRAN for computational speed. Typical 

training of the classifier analysis is very compute intensive, 

typically involving CPU weeks to months on a modern desktop 

computer. The measures of success are the number of true 

positives (TP) from known-event datasets (Ev), and the number of 

true negatives (TN) from known-nonevent datasets (NEv). Best TP 

and TN rates are obtained by minimizing the prediction distance: 

D = {[1 – (TP/Ev)]
2
 + [1 – (TN/NEv)]

2
}

1/2
.     (1) 

 

Table 1. Summary of the Trainable Parameters 

Algorithm 

Step 

Specific 

Parameter 

Small 

value 

Large 

value 

Present  

work 

Digitize data 
data points in 

cutset (N) 

scarce 

statistics 

blurred 

change 

5000  N < 

100000 

Remove 

artifact 

half-window 

width (w)  

faster 

artifacts 

slower 

artifacts 

2  w < 

100 

Symbolize 

data 

number of 

symbols (S) 

noise 

rejection 

excess 

precision 
2  S < 100 

Phase  

space 

dimensions  

(d) 

under-

fitting 

over- 

fitting 
1  d  26 

time delay lag 

() 

small 

unfolding 

large 

unfolding 

1   < 100 

Connected 

phase Space 

inter-symbol 

lag () 

short 

correlation 

long 

correlation 
1   < 100 

Phase space 

dissimilarity 

base-case 

cutsets (B) 

short 

baseline 

long 

baseline 
5  B  20 

 

 

The forewarning analysis proceeds as follows: (a) choose specific 

values for each of the training parameters in the set, {d, S, M, L, 

w, B, N}; (b) search exhaustively over NOCC (the number of 

successive cutsets where dissimilarity between test and basecases 

is above a threshold) and UC (the threshold for a normalized 

dissimilarity measure) for each of the dissimilarity measures to 

find the smallest prediction distance, D, or for smallest 

forewarning time if no improvement in D occurs; (c) search 

randomly over the parameter space in (a)-(b) until no further 

improvement is found; and (d) search exhaustively over the 

pruned domain from (c) to find the largest region of smallest D. 

The search strategies under (c) and (d) use the falsifiability 

theorem to eliminate (prune) statistical models that do not match 

the data [9]. Random and exhaustive searches are needed (rather 

than steepest-descent methods, for example), because the 

objective function over the search space has very irregular 



features, as shown in figure 2. Our current analysis is >200-fold 

faster than real time on a desktop or hand-held device. The 

random and exhaustive searches over the parameter space allow 

partitioning of the computation into parallel instantiations, which 

scale linearly in the number of processors. 
 

3. REPRESENTIVE RESULTS 
The phase-space analysis technique has shown historical success 

for forewarning of events in diverse application areas.  Part of our 

future work involves acquisition of cyber data of various kinds in 

order to determine applicability of the theorem-based approach 

for forewarning and detection.  In lieu of cyber data, the success 

of this approach in other domains establishes its relevance for 

cyber applications as a statistical analysis method for noisy, time-

serial data. Two specific examples are discussed next: epileptic 

seizure prediction and forewarning of helicopter rotor gearbox 

failure.  

3.1 Biomedical Application 
A promising application of phase-space analysis involves 

forewarning of epileptic seizures.  Historically, we have used 32-

channel, human scalp brain waves (electroencephalography or 

EEG) sampled at 250 Hz for algorithmic training. Currently we 

use 940,104 seconds (261 hrs and 8 min) of physician-provided 

“representative” EEG data. The data represents 60 human EEG 

observation datasets (27 GB). Forty (40) datasets have seizure 

events; twenty (20) datasets have no event. Due to lack of 

additional characterized data, we only use the data for training the 

parameter space (discussed in section 2). Typical results from 

EEG analysis fill a receiver-operating space, arising from 

dependence on the large training-parameter space, {d, S, , , w, 

B, N}, summarized in table 1. To date, the best point has a true 

positive rate of 39/40 and a true negative rate of 19/20. Figure 2 

shows the prediction distance for an exhaustive search through a 

slice of the search space.  
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Figure 2. Minimum prediction distance (DN) versus N and , 

for values of the other parameters fixed at d=7, S=3, =56, 

w=29, B=12. The colors correspond to the following values of 

DN: red (0.0559); yellow (0.0707); green (0.0901); cyan 

(0.1031); blue (0.1118); black (0.1250); and white (0.1346). 

The fractal features in figure 2 show that the objective function is 

not smooth, and has isolated maxima (and minima) that cannot be 

predicted from nearby points. Only a locally exhaustive search 

strategy can find the best values. The best points are an 

improvement over the previous results [8] for three reasons, 

namely: (1) DN = 0.055902 (versus DN = 0.1581 previously [8]); 

(2) TN = 19/20, and TP = 39/40 (versus 17/20 and 39/40 

previously); (3) the best solutions occur in regions, versus an 

isolated point previously. 

3.2 Mechanical Application 
Another successful application of phase-space analysis involves 

forewarning of failure in the main rotor gearbox for a helicopter 

[10].  In this experiment, a seeded fault (notch) was formed in one 

gear tooth, with accelerated failure testing at 1.5-times the 

maximum design torque. Accelerometer data were sampled during 

contiguous, non-overlapping 15-second intervals. Forewarning 

corresponds to several successive values above a threshold of a 

composite measure Ci as the sum of the four dissimilarities. 

Figure 3 shows Ci versus time for one accelerometer channel.  

Figure 3 illustrates the forewarning threshold value, UFW =2.701, 

as a green horizontal line. Many Ci values fall below this 

threshold before 2.43 hours, corresponding to nominal gearbox 

operation. Failure forewarning spans 464 successive occurrences 

of Ci >UFW after 2.43 hours. Before this time (between 2.3 and 

2.425), the largest number of successive occurrences of Ci  >UFW 

is 31, denoted in Figure 3. This false indication is excluded by 

requiring at least 32 successive occurrences above the threshold, 

to yield a forewarning criterion of  32 successive occurrences for 

Ci  >UFW = 2.7015 with the start of forewarning at 2.56 hours (32 

time windows after 2.43 hours at 15 seconds per time window). 

Figure 3 also displays failure onset as 40 successive occurrences 

of the composite dissimilarity above the red horizontal line, Ci  

UFAIL=21.68. The study [10] also found analogous forewarning or 

failure onset prediction for other accelerometer channels.  Overall, 

the phase-space dissimilarity analysis showed promise in main 

rotor gearbox failure prediction. 
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Figure 3. Failure forewarning and onset via the composite 

dissimilarity for accelerometer A1. 

4. CYBER APPLICATION 
Cyber observables (e.g., from a PC’s hardware performance 

monitoring facility) form a sequence of emergent, dynamical 

states [1]. Examples include the instructions executed per cycle, 

the total number of references to the data cache, and component 

level power measurements. As with biomedical, industrial, and 

mechanical applications, Takens’ theorem [3] can guarantee 

topologically-invariant construction of these dynamics in a 

sufficiently high-dimensional state-space, assuming a real, twice-

differentiable observable without special symmetries. 

Forewarning and detection of anomalous events in the cyber 

domain has massive implications for improved operational 

readiness and ensuring security of mission-critical systems.  

Unfortunately, forewarning and detection are only useful if they 

are reliably actionable. Although high true positive rates can be 

achieved for various methods of anomaly detection using a wide 

variety of data correlation, high false positive rates cause a loss of 



confidence in applied tools and reduced efficiency for operational 

communities in both the government and commercial sector.  Two 

specific areas in phase-space analysis may be fruitful. 

4.1 Component Failure 
Failures in mechanical and electrical systems involve dynamical 

changes (e.g., whisker growth to create an electrical short, or 

crack growth to create a connectivity or structural failure). 

Modern high-performance computers require several reboots per 

day to recover from failures. Exascale computers will experience 

thousand-fold more faults, for which failure prediction is then 

essential. Present prediction techniques use empirical analysis, 

and achieve a true positive rate of 94% and a false positive rate of 

55-59% [11]. The high false-positive rate does not allow reliable 

predictive maintenance or other pro-active steps, such as 

computational migration away from the failing component(s). In 

addition, studies in large disk drive populations [12] indicate that 

several parameters from the self-monitoring facility (SMART) 

correlate highly with failures, but models based on SMART 

analysis alone are not likely to be useful for predicting failures in 

individual drives.  Phase-space analysis promises an alternative 

approach with higher accuracy for such failures. 

4.2 Host-Based Anomalies 
A key question of basic research is whether malicious software 

operates outside of normal operational constraints. Phase-space 

analysis can utilize electrical power consumed by each active 

component (e.g., CPU, memory, disk-drive, network access card) 

to determine anomalous patterns, if they are exhibited by certain 

malware. The specific measures are electrical current (I) and 

electrical voltage (V) to yield power (P = I*V). Typical voltages 

are 3-12 VDC, which vary with instantaneous load. Typical 

currents are < 1a and are highly load dependent. Typical data-

sampling rates are 50 kHz (20 microsecond intervals) to resolve 

processor dynamics. As figure 4 illustrates, we envision 

appropriate sensors on key components to collect various types of 

power data.  Hardware-based counters in modern computers also 

expose process and host-level information such as timing, 

processor load, instructions per cycle, and memory operations: all 

these data are adaptable to phase-space methodologies because 

they can have temporal relationships. 

 

Figure 4. Conceptual Component-Level Power Monitoring. 
 

Our research entails three phases of future work: 1) configuration 

of data acquisition equipment and monitoring sensors in 

controlled laboratory environments; 2) data collection 

experiments to identify and define baseline behavior for different 

cyber environments under different operating regimes; and 3) 

detection of variations from baseline behavior using phase-space 

dissimilarity analysis during malicious program execution or hard 

drive failure scenarios.  The results will guide creation of real-

time sensor based applications for field testing and deployment. 

5. CONCLUSIONS 
In this paper we propose a novel approach for prediction and 

detection of anomalies in cyber applications. We show the 

technical strength of the approach is a theorem-based, data-driven 

phase-space analysis. Prior work demonstrates the success of the 

technique for forewarning in diverse environments with disparate 

forms of time serial data.  We illustrate how several forms of 

cyber data are adapted for this analysis method and make the 

argument for future research using this framework.   
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