
Adapting Bro into SCADA: Building a Specification-based
Intrusion Detection System for the DNP3 Protocol

Hui Lin1, Adam Slagell2, Catello Di Martino1, Zbigniew Kalbarczyk1, Ravishankar K. Iyer1
1Coordinated Science Laboratory, University of Illinois at Urbana-Champaign,

1308 W. Main Street, Urbana, IL, 61801
2National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign,

1205 W. Clark Street, Urbana, IL, 61801
1{hlin33, dimart, kalbarcz, rkiyer}@illinois.edu, 2slagell@illinois.edu

ABSTRACT
When SCADA systems are exposed to public networks, attackers
can more easily penetrate the control systems that operate
electrical power grids, water plants, and other critical
infrastructures. To detect such attacks, SCADA systems require
an intrusion detection technique that can understand the
information carried by their usually proprietary network protocols.

To achieve that goal, we propose to attach to SCADA systems a
specification-based intrusion detection framework based on Bro
[7][8], a runtime network traffic analyzer. We have built a parser
in Bro to support DNP3, a network protocol widely used in
SCADA systems that operate electrical power grids. This built-in
parser provides a clear view of all network events related to
SCADA systems. Consequently, security policies to analyze
SCADA-specific semantics related to the network events can be
accurately defined. As a proof of concept, we specify a protocol
validation policy to verify that the semantics of the data extracted
from network packets conform to protocol definitions. We
performed an experimental evaluation to study the processing
capabilities of the proposed intrusion detection framework.

Categories and Subject Descriptors
K.6.5 [Security and Protection]

General Terms
Security

Keywords
SCADA, DNP3, Bro, specification-based intrusion detection
system

1. INTRODUCTION
SCADA (Supervisory Control And Data Acquisition) systems
monitor and control geographically distributed assets found in
power grids, water plants, and other critical infrastructures.
Modern SCADA systems are increasingly adopting Internet
technology to boost control efficiency. Exposing such control
systems to public networks increases the risk of attacks and
failures inherited from the commodity network infrastructure.

What makes things even worse is that many companies operating

critical infrastructures lack sufficient protections against failures
caused by accidental events and malicious attacks. Consequently,
industrial control operations are subject to serious cyber threats,
and not just in theory. For example, in 2011, an attacker
penetrated the control system of a water plant in Texas; in a
similar 2012 incident, an intruder broke into a company operating
gas pipelines.

The major challenge of applying traditional intrusion detection
systems (IDSes) is that they usually lack sufficient capabilities to
investigate network traffic based on unique proprietary protocols
found in SCADA systems. This drawback prevents in-depth
analysis of network activities, making traditional IDSes blind to
attacks specific to SCADA systems.

In this paper, we propose a specification-based intrusion detection
framework to provide high visibility of the semantics of the data
carried by the proprietary network protocols. Specifically, we
adapted Bro [7][8], a real-time network traffic analyzer, to
integrate parsers of proprietary network protocols, such as DNP3,
used in electrical power grids [3]. The built-in parsers generate
network events related to SCADA systems, which are further
analyzed to detect violations of defined security policies using the
proposed intrusion detection framework.

Furthermore, we specify a protocol validation policy to maintain
appropriate communication patterns defined by the DNP3
protocol. Abnormal communication patterns, which can be caused
by malformed or replayed network packets, may indicate device
failures, system misconfigurations, denial-of-service attacks, or
malicious operations that put control environments into unstable
states. The main purpose of proposing this policy is to
demonstrate that the proposed intrusion detection framework is
able to analyze the SCADA-related semantics from DNP3
network traffic. Other scenario-specific policies can be similarly
specified and applied in various SCADA systems. The DNP3
parser and the proposed policy that we have built will be included
in Bro’s source code repository [8].

2. Related Work
Traditional signature-based intrusion detection techniques are not
widely used in control environments, because little analysis of real
attacks is available to public. Instead, anomaly-based intrusion
detection techniques were initially used in the area. The work in
[5] uses destination host addresses, port numbers, and other
attributes of network packet headers to detect abnormal network
traffic in SCADA systems. However, that technique is not
effective in detecting malicious control operations hidden in the
network payload.

The work in [2] detects intrusions based on violations of defined
models characterizing the knowledge specific to the Modbus

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CSIIRW '12, October 30 - November 2, Oak Ridge, Tennessee, USA
Copyright © 2012 ACM 978-1-4503-1687-3 ... $15.00.

protocol. Modbus is another proprietary protocol used in SCADA
systems [9]. Compared to Modbus, many other proprietary
protocols, such as DNP3, are much more complex and contain
more diverse semantics. Work presented in [1] applies a
specification-based technique to the advanced metering
infrastructure (AMI), which is a very different wireless
communication environment. Both [1] and [2] emphasize the
design of system models or specifications and their formal
verification. Although our work also proposes a protocol
validation policy for DNP3, we focus on the design of an
applicable framework that can be used in real SCADA systems to
provide various runtime semantic analyses.

3. DNP3 ANALYZER
In this section, we present three main components of the DNP3
analyzer, the proposed intrusion detection framework based on
Bro [7][8].

Bro is a real-time network traffic analyzer widely used in forensic
analysis, intrusion detection, and other network-related analysis.
The modifications that we made to adapt Bro into SCADA
systems are highlighted in Figure 1. We built a new parser of the
DNP3 protocol to generate SCADA system-specific events. The
semantics related to each event were delivered into the
corresponding event handler. To analyze the semantics, we
implemented the protocol validation policy by defining event
handlers in terms of Bro scripts. The policy script interpreter
executed the scripts to produce analysis results, such as alerts on
abnormal network activities.

Figure 1: DNP3 Analyzer Based on Bro

3.1 DNP3 Parser
The main responsibility of the network packet parser is to decode
byte streams into meaningful data fields according to the protocol
definition. The main body of Bro is written in C++. The DNP3
parser, however, exploits a compiler-assisted tool named binpac
to shorten the development period and to ensure logical
correctness [6].

To design the new parser, we represented the syntax of the DNP3
protocol by the binpac scripts, which are specifically designed to
represent the hierarchical structure of a network protocol. With
the help of the binpac compiler, the binpac scripts were
automatically translated into C++ and integrated into Bro.

3.2 Event Handlers
Event handlers are used to analyze network events generated from
parsing of each DNP3 network packet. The semantic information
related to each event is extracted during parsing. For example, a
dnp3_crob (Control Relay Output Block) event is generated by
the DNP3 parser if an operation to control relay outputs is found
within a DNP3 request. The parameters associated with this
operation, such as the type and the duration of the operation, are

extracted from the packet and delivered to the corresponding
event handler.

A declaration of an event handler, including its name and
arguments, provides an interface between the DNP3 parser and
the policy script interpreter. During the parsing at runtime, the
value of each argument is updated by the semantic information
related to this event. We declared and associated an event handler
with each type of data field defined in the DNP3 protocol; thus the
DNP3 analyzer can cover all semantic information from any type
of DNP3 network packet. Although the declarations of event
handlers are fixed, their definitions are left to be implemented in
terms of Bro scripts written by security experts. In specific
operational contexts such as operations in power grids, system
policies can be dynamically adjusted by including definitions of
different event handlers.

3.3 Protocol Validation Policy
Other than defining the hierarchical structure of a network packet,
the DNP3 protocol introduces additional requirements regarding
network traffic. Specifically, dependencies between data fields
within a single network packet are defined, and certain
communication patterns between different network packets have
to be maintained. The purpose of this policy is to use intra- and
inter-packet validation to ensure observance of such requirements.

3.3.1 Intra-Packet Validation
The intra-packet validation is used to ensure dependencies
between different data fields within a single network packet.
Similar to teardrop attacks, malformed network packets can be
used to directly perform denial-of-service attacks. During our
experiment, such an attack occurred; malformed DNP3 network
packets crashed Wireshark [10], an open source network traffic
monitor.

A DNP3 network packet consists of different data fields, such as
the object type and the function code. The structure of some data
fields depends on the value of others. For example, the “length”
field in the link layer header defines the length of the following
payload field. As a result, we should verify that the value of the
“length” field is consistent with the real payload length.

During the validation process, the value ranges for certain data
fields are also analyzed, because out-of-bound values can be used
to detect attacks. For example, the DNP3 protocol uses an 8-bit
integer to represent the function code, and 37 out of 256 possible
combinations are defined. However, in a real control system, only
a subset of the 37 values are supported. So a DNP3 request with
an abnormal function code may indicate a reconnaissance scan
from an adversary.

3.3.2 Inter-Packet Validation
In addition to defining rules for data fields within a network
packet, DNP3 defines communication patterns between different
packets. For example, an “OPERATE” packet is almost always
issued right after a “SELECT” packet to control remote field
devices chosen by the previous “SELECT” packet.

The unmatched requests and responses are often the result of
denial-of-service attacks or replay attacks, such that an adversary
can flood a communication channel with previously transmitted
network packets in an attempt to unexpectedly repeat certain
operations. The DNP3 analyzer can maintain states from the
parsed network packets. Based on the states, the incoming packets
are further correlated and analyzed to guarantee appropriate
communication patterns.

4. EXPERIMENTAL EVALUATION
The DNP3 analyzer, which includes the DNP3 parser and the
sample protocol validation policy, is evaluated in this section.

4.1 Evaluation of the DNP3 Parser
First, we focus on robustness evaluation of the DNP3 parser. An
unexpected hanging of a parser would prevent it from analyzing
DNP3 packets. As a result, the DNP3 analyzer would fail to detect
potential attacks.

The DNP3 parser is constructed by the binpac scripts, which
express the structure of a network protocol following a certain
BNF grammar [6].

Table 1: A Part of the DNP3 Parser in the binpac Scripts
type Dnp3_Request = record {
 app_header : Dnp3_App_Req_Header ;
 data : case (app_header.function_code) of {
 0x01 -> read_requests : Read_Req_Object [] ;
 0x02 -> write_requests : Write_Req_Object [] ;

 };
};
type Dnp3_App_Req_Header = record {
 application_control : uint8;
 function_code : uint8;
} &length = 2 ;

Table 1 shows a part of the binpac scripts that represent a DNP3
request. In binpac, a record data structure, which is a user-defined
composite type, describes a production rule in a BNF grammar.
For example, the “Dnp3_App_Req_Header” record can be
regarded as the following production rule:
Dnp3_App_Req_Header ::= application_control function_code

After the “app_header” of the type “Dnp3_App_Req_Header” has
been defined, the “data” part can be defined by different new
record types, whose internal structure is varied according to the
function code field in the “app_header” (implemented by a “case”
statement). Similarly, whenever defining a new field inside the
“data” part, we explicitly made a new record type for this field
instead of using predefined ones (even if this new field has the
same structure as the predefined ones). As a result, the DNP3
parser avoids using recursive production rules, such as production
rules with the form of A ::= Ax or A ::= Bx ; B ::= A.

We evaluated the DNP3 parser using a sample traffic trace
collected from a real electrical power grid located in Ohio. We
then evaluated it further using malformed synthetic network traffic
with the protocol validation policy. The latter experiment is
described in the next section.

4.2 Evaluation of Protocol Validation Policy
In this paper, the protocol validation policy is specifically defined
based on the context of SCADA systems operating electrical
power grids. Its implementation includes the definitions of three
event handlers: dnp3_app_request_header,
dnp3_app_response_header, and dnp3_object_header. These
event handlers extract values of the function code, the object type,
and other semantic information from the DNP3 request/response
headers and object headers.

For example, an object with the group number 12 and variation
number 1 describes a CROB (Control Relay Output Block) object.
This type of object can only be initiated by requests with function

codes 3, 4, 5, and 6. Consequently, we included the following Bro
scripts in the policy to validate this rule.

 if ((Obj_Type == 0x0c01) &&
 ((FunCode < 0x03) || (FunCode > 0x06)))
 ALERT;

Other rules defined by the DNP3 protocols were verified through
similar scripts. The implementation details will be included in
Bro’s source code repository [8].

We evaluated the implementation of the policy in a simulated
SCADA testbed (Figure 2). A Windows XP workstation
simulated a control center that collected measurement data from a
field site and issued operations to it. The field site was simulated
by a data aggregator and a relay. The data aggregator worked as a
mediator that aggregated measurement data from the relay and
forwarded an operation from the control center to this relay. The
relay monitored the status of an electrical transmission line. The
monitor machine was a separate commodity workstation in which
the proposed DNP3 analyzer ran independently without affecting
the operations of the control center and the field site. All the
components were connected to a network switch. The switch was
configured such that all network traffic was “mirrored” to the
monitor machine.

Figure 2: Simulated SCADA Testbed

We used Protocol Test Harness [11], the software running in the
control center, to generate DNP3 network packets of different
structures. A “Fuzzy Engine” is a self-developed program based
on the TCP/IP socket. In each round of communication, the
“Fuzzy Engine” replaced each byte of the generated packet with a
random value. As a result, the control center issued both well-
formatted and malformed packets to the data aggregator (Figure
2). Corresponding error detection codes (CRC values) were
recalculated to simulate modifications made by an attacker.

4.2.1 Robustness Evaluation
For comparison, both Wireshark [10] and our DNP3 analyzer
were used to monitor the testbed at runtime. Notably, the two
tools handled malformed network packets differently. In one of
our experiments, Wireshark looped for more than three hours
when processing a malformed packet that is shown in Figure 3.
The 5th byte of the packet represented the qualifier field that
defines the hierarchical structure of the remaining part of the
packet. After it was replaced with the value 0x09, Wireshark hung
for over three hours. Although it is not clear what exactly caused
the loop, we suspect that the injected errors resulted in the misuse
of a loop statement or a recursive procedure.

Figure 3: The DNP3 Network Packet that Crashes Wireshark
Our proposed DNP3 analyzer did not introduce such unreliable
behavior during any of our experiments. The DNP3 parser avoids
using recursive production rules in its implementation. The

protocol validation policy is implemented by less than 400 lines of
Bro scripts. Consequently, we can easily verify that the policy
scripts avoid loop statements and recursive function calls.

4.3 Performance Evaluation
As the DNP3 analyzer is used to analyze industry control
environments passively, it must process network packets in real-
time to provide useful detection results.

In this section, we evaluate the throughput of the DNP3 analyzer
in terms of the number of packets processed per second. We used
the experimental setup shown in Figure 2 to generate a 1 GB
packet trace. The packet trace contained both well-formatted and
malformed DNP3 network packets along with the TCP packets
needed to open and close communication sessions. The whole
trace included a total of 3,789,120 DNP3 packets.

The DNP3 analyzer processed the packet trace off-line on the
monitor machine. The purpose of the off-line analysis is to
evaluate the ultimate processing capabilities of the DNP3
analyzer. The analysis results can suggest how the proposed
DNP3 analyzer might fit into real SCADA systems.

The monitor machine was a VMware virtual machine with a
single logical processor with two 3.07GHz cores and a 1GB
RAM. During the processing, we ran the monitor machine
exclusively without starting other virtual machines in the same
host to avoid possible interferences. We performed 10
experimental runs to measure the average execution time.

Table 2 presents the throughputs of the DNP3 parser (first row)
and the DNP3 analyzer with the protocol validation policy
(second row). With the policy loaded, the DNP3 analyzer
processed approximately 30% less network traffic every second.
The reason is that the protocol validation policy performed intense
analysis on almost all fields of each DNP3 network packet and
generated a large number of alerts from malformed packets. Even
under those circumstances, more than 9000 DNP3 network
packets were processed every second. In an industrial control
environment such as the power grid, legacy devices usually issue
one or two DNP3 network packets every second [4]. Based on
those figures, we anticipate that the proposed DNP3 analyzer can
monitor a field site consisting of 4500 to 9000 devices. When
more DNP3 analyzers are distributed into different host machines
to form a monitor cluster, a larger-scale control environment can
be monitored. Furthermore, it is possible to design an intrusion
prevention system based on the proposed DNP3 analyzer to stop
malicious operations.

Table 2: Throughput for the DNP3 Analyzer
Evaluation Target Throughput (packets/second)

DNP3 Parser 13950
DNP3 Parser & Policy 9427

5. CONCLUSIONS
In this paper, we propose a DNP3 analyzer that is an intrusion
detection framework based on Bro. With the help of the DNP3
parser, the analyzer is able to observe all DNP3 events related to
SCADA systems. A sufficient number of event handlers are
declared and associated with data fields in network packets to
cover all semantic information carried by DNP3 network traffic.

Based on the extracted semantic information, we can accurately
design security policies to perform analysis. As a proof of
concept, we proposed a protocol validation policy that ensures
that network traffic follows predefined communication patterns.

The proposed DNP3 analyzer was evaluated in scenarios
involving both well-formatted and malformed network packets,
the latter of which triggered intense analysis and a large amount
of alerts. Based on that “worst-case” experiment, we believe that
the proposed DNP3 analyzer holds promise to work in real
SCADA systems.

In future work, we plan to apply the DNP3 analyzer to detect
well-formatted control operations from malicious users. In order
to reveal the purpose of the suspicious network traffic, we must
carefully select and correlate semantics related to different control
operations as well as host activities in the control center.

6. ACKNOWLEDGMENTS
This material is based upon work supported in part by the
Department of Energy under Award Number DE-OE0000097, by
the National Science Foundation under Grant No. OCI-1032889,
by Infosys Limited, and by the Boeing Company. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation or other sponsors.

7. REFERENCES
[1] Berthier, R. and Sanders, W. H. 2011. Specification-based

intrusion detection for advanced metering infrastructure. In
Proceedings of 2011 IEEE 17th Pacific Rim International
Symposium on Dependable Computing (Pasadena, CA, USA,
Dec. 12 - 14, 2011), 184-193.

[2] Cheung, S., Dutertre, B., Fong, M., Lindqvist, U., Skinner,
K., and Valdes, A. 2007. Using model-based intrusion
detection for SCADA networks. In Proceedings of the
SCADA Security Scientific Symposium 2007 (Miami Beach,
FL, USA, Jan. 24 - 25, 2007), 127-134.

[3] Curtis, K. 2000. A DNP3 protocol primer. Technical report.
DNP User’s Group.

[4] Heine, E., Khurana, H., and Yardley, T. 2011. Exploring
convergence for SCADA networks. In Proceedings of 2011
IEEE PES Innovative Smart Grid Technologies (Hilton
Anaheim, CA, USA, Jan. 17 - 19, 2011), 1-8.

[5] Linda, O., Vollmer, T., and Manic, M. 2009. Neural network
based intrusion detection system for critical infrastructures.
In Proceedings of International Joint Conference on Neural
Networks, 2009 (Atlanta, GA, USA, June 14 - 19, 2009),
1827-1834. IJCNN 2009.

[6] Pang, R., Paxson, V., Sommer, R., and Peterson, L. 2006.
Binpac: A yacc for writing application protocol parsers. In
Proceedings of the 6th ACM SIGCOMM Conference on
Internet Measurement (New York, NY, USA, Oct 25 - 27,
2006), 289-300. IMC '06.

[7] Paxson, V. 1999. Bro: A system for detecting network
intruders in real-time. Computer Networks, 31, 23 (Dec.
1999), 2435-2463.

[8] The Bro Project. 2012. Bro Network Security Monitor.
http://bro-ids.org.

[9] The Modbus Organization. 2006. Modbus messaging on
TCP/IP implementation guide v1.0b 2006.
http://modbus.org.

[10] The Wireshark Foundation. 2012. Wireshark.
http://wireshark.org/.

[11] Triangle MicroWorks, Inc. 2012. Communication Protocol
Test Harness. http://trianglemicroworks.com.

	1. INTRODUCTION
	2. Related Work
	3. DNP3 ANALYZER
	3.1 DNP3 Parser
	3.2 Event Handlers
	3.3 Protocol Validation Policy
	3.3.1 Intra-Packet Validation
	3.3.2 Inter-Packet Validation

	4. EXPERIMENTAL EVALUATION
	4.1 Evaluation of the DNP3 Parser
	4.2 Evaluation of Protocol Validation Policy
	4.2.1 Robustness Evaluation

	4.3 Performance Evaluation

	5. CONCLUSIONS
	6. ACKNOWLEDGMENTS
	7. REFERENCES

