
Dynamic Systems Security Testing using Function Extraction

Alan R. Hevner

College of Business

University of South Florida

Tampa, FL 33620

ahevner@usf.edu

Richard C. Linger
Cyberspace Sciences and Information Intelligence Research Group

Oak Ridge National Laboratory

Knoxville, TN 37831

lingerr@ornl.gov

Abstract— We describe an approach for applying Function

Extraction (FX) technology to the dynamic testing of security

in large-scale, operational software systems. FX is used

proactively as an intrusion detection and prevention system

(IDPS) within a security infrastructure surrounding the

operation of a critical software system. An innovative aspect of

the FX approach is the concept of computational security

attributes (CSA). The CSA approach to software security

analysis provides theory-based foundations for precisely

defining and computing security attribute values. The

translation of a static security property expressed as an

abstraction of external data to the dynamic behavior of a

program expressed in terms of its data and functions is a key to

the CSA approach for verification of behaviors that meet

specific security properties. The paper concludes with a

discussion of future research and development directions for

applying FX to dynamic security testing.

Keywords-Systems security testing, Intrusion detection,

Intrusion prevention, Function extraction, Computational

security attributes

I. INTRODUCTION

Recent statements by the FBI’s top cyber cop, Shawn

Henry, have highlighted the immense challenges of security

in critical computer systems and data networks (Barrett

2012). Current public and private security approaches are

unsustainable. Henry states, “I don’t see how we ever come

out of this without changes in technology or changes in

behavior, because with the status quo, it’s an unsustainable

model.” (emphasis added)

Our research on the emerging technologies of Function

Extraction (FX) for software system understanding and

analysis provides a paradigm change that can result in new

ways of thinking about the security testing of software

systems. The objective of FX is to compute the behaviors of

software systems to the maximum extent possible with

mathematical precision. FX presents an opportunity to move

from the current range of slow and costly security testing

processes to fast and cheap computation of system

behaviors, including behaviors related to security, at

machine speeds. Because a principal objective of testing is

to validate system behaviors and qualities, automated

computation can be expected to streamline testing processes

and permit increased focus on system-level issues such as

security and sustainability (Pleszkoch et al. 2008).

In this paper, we propose an approach for applying FX

technology to the dynamic testing of security in large-scale,

operational software systems. FX is used proactively as an

intrusion detection and prevention system (IDPS) within a

security infrastructure surrounding the operation of a critical

software system. An innovative aspect of the FX approach

for IDPS is the concept of computational security attributes

(CSA). The CSA approach to software security analysis

provides theory-based foundations for precisely defining

and computing security attribute values (Walton et al.

2009). The translation of a static security property expressed

as an abstraction of external data to the dynamic behavior of

a program expressed in terms of its data and functions is a

key to the CSA approach to verification of behaviors that

meet specific security properties.

The paper concludes with a discussion of future research

and development directions for applying FX to dynamic

security testing.

II. FUNCTION EXTRACTION

Software behavior computation begins with the observation

that sequential programs can be regarded as rules for

mathematical functions or relations. That is, programs can

be treated as mappings from domains to ranges, and

mapping functions can be computed through methods of

function composition (Linger et al. 1979).

For illustration, consider the following simple program

fragment operating on small integers. It takes in values for

a, b, and c (used but never set) and produces values for r, s,

t, w, x1, and x2:
r := b*b

s := a*c

t := 2*a

w := sqrt(r – 4*s)

x1 := (-b + w)/t

x2 := (-b - w)/t

Final values for r, s, and t are self-evident, and final values

for w, x1, and x2 can be easily composed through

successive algebraic substitution:

mailto:ahevner@usf.edu
mailto:lingerr@ornl.gov

w = sqrt(r - 4*s)

 = sqrt(b*b - 4*a*c)

x1 = (-b + w)/t

 = (-b + sqrt(r - 4*s))/t

 = (-b + sqrt(b*b - 4*a*c))/2*a

 x2 = (-b - w)/t

 = (-b - sqrt(r - 4*s))/t

 = (-b - sqrt(b*b - 4*a*c))/2*a

The final step in each derivation gives the net behavior as:
true

 w := sqrt(b*b - 4*a*c)

 x1 := (-b + sqrt(b*b - 4*a*c))/2*a

 x2 := (-b - sqrt(b*b - 4*a*c))/2*a

 Thus, the behavior of the fragment is to compute the

familiar formula for the two roots of a quadratic equation

defined by coefficients a, b, and c, and assign them to

variables x1 and x2, with the square root of the discriminant

captured in the final value of w. Note that these expressions

are procedure-free. The right-hand-sides are assigned to the

left-hand-side variables concurrently. This is a conditional

concurrent assignment (CCA), the general form of

expression for computed behavior. In this case, the

condition is “true” because the program is a sequence

structure that always executes. This is the as-built

specification of the program. If the program contained an

error or unintended content, it would similarly be revealed

in the composition of its behavior.

Programmers engage in this sort of reasoning to

determine net effects of programs all the time. They have

learned the semantics of individual instructions, that is, how

each instruction transforms the state of a program, and must

mentally compose these functional effects to arrive at an

understanding of what an entire program written by

themselves or others does in execution. This is not an easy

task. As software systems are developed and evolve over

time, large quantities of composite semantic content are

continuously created, whether correct or incorrect; secure or

not secure.

Effective system development and evolution depends on

how well these behavioral semantics are understood. The

problem is compounded by the massive numbers of possible

paths through programs and the necessity to understand

them all. It is one thing to do this for small programs, but

quite another for large ones, where complexity can easily

overwhelm human comprehension. Because human

fallibility in mental program composition is a source of

errors and vulnerabilities in software development, it is

reasonable to ask if this task can be offloaded to machine

computation to help free human intelligence and attention

for more creative tasks in software engineering.

This question is being addressed in research and

development being carried out on Function Extraction (FX)

technology by Oak Ridge National Laboratory (ORNL).

The objective of FX is to compute the behavior of software

with mathematical precision to the maximum extent

possible. As noted, sizable programs can contain a massive

number of execution paths; however, they are constructed of

a finite number of nested and sequenced control structures,

each of which makes a knowable contribution to overall

behavior. These structures correspond to mathematical

functions that can be computed in a stepwise process that

traverses the finite control structure hierarchy. At each step,

procedural details are abstracted out, while net effects are

preserved and propagated in extracted behavior.

FX technology is initially being implemented for

programs written in or compiled into Intel assembly

language, with a current emphasis on malware analysis

(Pleszkoch and Linger 2004) and use of computed behaviors

to augment or replace certain forms of testing (Pleszkoch et

al. 2008). The focus of malware analysis is on the use of

computed behavior to unravel complex program logic and

remove control flow and no-op block (code with no

functional effect) obfuscation inserted by intruders,

followed by computation of the behavior of the remaining

functional code.

The overall architecture of an FX system is depicted in

Figure 1. The starting point is a definition of the functional

semantics of the programming language. The Function

Extraction process generally proceeds from transformation

of an input program into functional form, followed by

structuring and behavior computation. There is a lot more to

the process than this, but the figure provides a notional view

of the major steps involved.

Figure 1: The Function Extraction process

Function Extraction has potential for widespread

application across the software engineering life cycle, as

discussed in (Collins et al. 2011). At this point, FX is an

emerging technology that can be built out for many wide-

ranging evaluation and operational applications.

Functional semantics
for language
instructions

Input
program

Behavior
catalog

Transform
program to

structured form

Transform
instructions to
functional form

Compute
behavior of each
control structure

Function Extraction system

III. FX FOR INTRUSION DETECTION AND PREVENTION

With the use of FX technology, an opportunity exists for

systems testing and customer acceptance testing to shift

from defect detection to certification of fitness for use. In

particular, we highlight the application of FX for the

purposes of intrusion detection and prevention in

operational software systems. Intrusion detection is the

process of monitoring dynamic events in a system and

analyzing them for indications of violations or threats of

violations of security policies, acceptable use policies, or

standard operating procedures for security practices

(Scarfone and Mell 2007). An intrusion prevention system

works with the detection mechanism to proactively react

and attempt to stop security violations. Here we outline FX

as an element of an intrusion detection and prevention

system (IDPS). A key aspect is use of FX for the analyses of

Computational Security Attributes as described in (Walton

et al. 2006)

IV. COMPUTATIONAL SECURITY ATTRIBUTES (CSA)

Fast and reliable analysis of security attributes is vital for

every sector of our software-dependent society. For

example, access to enterprise applications and data must be

restricted to those who can provide appropriate proofs of

identity. Applications and data must be protected so that

attempts to corrupt them are detected and prevented.

Healthcare systems must protect personal data while

allowing controlled access by authorized personnel.

Enterprises must be able to demonstrate that every

accounting change is auditable. The flow of data through

enterprise applications and the flow of transactions that

drive the data must be logged and reported as proof of what

actually happened.

In the current state of practice, security properties of

software systems are typically assessed through labor-

intensive evaluations by security experts who accumulate

system knowledge in bits and pieces from architectures,

specifications, designs, code, and test results. Ongoing

program maintenance and evolution limit the relevance of

even this hard-won but static and quickly outdated

knowledge. When systems operate in threat environments,

security attribute values can change very quickly. To further

complicate matters, security strategies must be sufficiently

dynamic to keep pace with organizational and technical

change.

A fundamentally different approach recognizes and

leverages the fact that the problem of determining the

security properties of programs comes down in large

measure to the question of how the software behaves when

invoked with stimuli intended to cause harmful outcomes.

Because security properties have functional characteristics

amenable to computational approaches, it is appropriate to

focus on the question “What can be computed with respect

to security attributes?” The computational security attribute

approach provides a step toward a computational security

engineering discipline. The ultimate goal is to develop and

describe mathematical foundations and their engineering

automation to permit:

 rigorous specification, evaluation, and improvement of

the security attributes of software and systems during

development,

 specification and evaluation of the security attributes of

acquired software,

 verification of the as-built security attributes of software

systems, and

 real-time evaluation of security attributes during system

operation.

Figure 2: Use of FX for CSA Analysis

While analysts have often characterized many security

attributes as “non-functional” properties of programs, it

turns out that they are in fact fully functional and thereby

subject to FX-style automated analysis. Complete

definitions of the required behavior of security attributes of

interest can be created based solely on data and

transformations of data. These definitions can then be used

to analyze the security properties of programs. Thus, as

illustrated in Figure 2, computational security attribute

(CSA) analysis consists of three steps (Walton et al. 2009):

1. Define required security behavior. Specify security

attributes in terms of required behavior during execution

expressed in terms of data and transformations on data.

2. Calculate program behavior. Apply function extraction

to create a behavior catalog that specifies the complete

“as built” functional behavior of the code.

3. Compare program behavior to required security

behavior. Compare the computed behavior catalog with

required security attribute behavior to verify whether it is

correct or not.

Requirements for security attribute behavior must

explicitly define expected behavior of code in all

circumstances of interest. Thus, the requirements for

security attribute behavior must include a minimal definition

of required behavior for all inputs of interest to the security

attributes, including desired inputs (for example, an

authenticated user id) and undesired inputs (for example, an

unknown user id). Usage environment conditions related to

security attributes are specified in the same manner as inputs

to the system. For example, availability of the network

might be specified by a Boolean value that indicates

whether or not the network is currently available. Security

successes and failures are also specified in terms of data.

For example, system control data can be used to indicate

whether the current user has been authenticated using a

trusted authentication mechanism.

Verification that a security property is satisfied requires

verification of both the data at rest (i.e., the control data

values) and the data in motion (i.e., the mechanisms used to

perform the data transformations). Some common tasks to

verify data at rest include checking to make sure that a

specific task (for example, an audit task) will always be

carried out to validate the contents of a specific control data

structure. Advantages of this approach to security attribute

verification include the use of constraints and boundary

conditions that can make any assumptions explicit. People

and process issues can be handled by the CSA approach by

using assumptions and constraints as part of the behavior

catalogs. Behaviors can embody requirements for a given

security architecture. The attribute verification process will

expose security vulnerabilities, making it easier to address

evolution of code, environment, use, and so forth.

The CSA verification process can provide important

opportunities for improved acquisition and third-party

verification. A “user” of a system might be a person, a

device, or a software component. The user may be the

intended user or may be an unexpected and/or hostile user.

An issue that must be considered with commercial off-the-

shelf (COTS) products and reuse is that the definition of

“user” embodied in the security behavior requirements may

not be the same definition that was employed in the COTS

or reused component. The same issue occurs when unknown

components are employed as “black boxes” in systems of

systems. If, in the composition of components or systems, it

doesn’t matter what a specific “black box” component does

with respect to security attribute requirements, then that

component can be used. However, if the behavior of a

component does matter, it cannot be used until its security

attributes have been verified. In this case, a behavior catalog

can be calculated for the component using its executable,

even if documentation and source code are not available.

Only externally observable behaviors are of interest to

security attribute analysis. Thus, while the behavior catalog

will have to be produced for the entire system in order to

extract the externally observable behaviors, there is no need

to expose the algorithm or source code, and there’s no need

to understand the entire state space.

V. CSA EXEMPLARS

Security properties are fully functional and are dependent on

the execution behavior of software. We briefly describe

seven security attributes to illustrate the range of CSA

analyses that can be performed via the use of FX. Three of

these attributes (confidentiality, integrity, and availability)

are important to information. The other four attributes

(authentication, authorization, non-repudiation, and privacy)

relate to the people who use that information. The

behavioral requirements for each of these attributes can be

completely described in terms of data items and constraints

on their processing. The processing can be expressed, for

example, as logical or quantified expressions or even

conditional concurrent assignments, which can be

mechanically checked against the calculated behavior of the

software of interest for conformance or non-conformance

with CSA requirements. A fuller discussion of these CSA

analyses can be found in Walton et al. (2006, 2009).

- Authentication: Authentication requires that a trusted user

has been bound to the behavior. That is, the system will

only allow the program to be executed if the user has

previously been determined to be a trusted user. To verify

authentication, one must examine the net effects on the

control data related to authentication: verify the data that

provides evidence that the binding took place, and verify

that this evidence data was not changed before completion

of any operation that required authentication.

- Authorization: Authorization requires that a user has the

right to perform the requested process. To verify that an

authorized operation took place, one must examine the net

effects on the control data to verify that it provides evidence

that authorization occurred before the operation, and that the

evidence data for the authorization was not changed before

that operation completed.

- Non-Repudiation: Non-repudiation of data transmission

requires that neither the sender nor the recipient of the data

can later refute his or her participation in the transaction.

Non-repudiation of changes to a dataset requires that the

means for authentication of changes cannot later be refuted.

For the purposes of this discussion we treat data change as a

special case of data transmission, where receipt of the data

transmission includes making and logging the requested

change to the dataset. To verify non-repudiation one must

examine the net effects on the control data related to non-

repudiation.

- Confidentiality: Confidential data access or confidential

data transmission requires that unauthorized disclosure of

one or more specific data items will not occur.

Confidentiality is often described in terms of a security

policy that specifies the required strength of the mechanisms

that ensure that the data cannot be accessed outside the

system. For example, the security policy may require

verification that approved encryption mechanisms are used

for the output. To verify confidentiality, one must examine

the net effects on the control data related to confidentiality.

- Privacy: Privacy requires that an individual has defined

control over how his/her information will be disclosed. To

verify privacy, one must examine the net effects on the

control data related to privacy.

- Integrity Integrity requires that authorized changes are

allowed, changes must be detected and tracked, and changes

must be limited to a specific scope. Integrity is defined as a

property of an object, not of a mission. To verify integrity,

one must examine the net effects on the control data related

to integrity. That is, one must be able to: isolate the object,

isolate all the behaviors that can modify the object, detect

any modifications to the data, and ensure that all

transformations of the data across the object are within the

pre-defined allowable subset.

- Availability: Availability requires that a resource is usable

during a given time period, despite attacks or failures. To

verify availability, one must examine the net effects on the

control data related to availability. To avoid having to

consider temporal properties, one can specify non-

availability rather than availability (i.e., specify under what

conditions the program’s behavior catalog do not apply).

VI. RESEARCH STATUS AND FUTURE DIRECTIONS

Computational security attribute (CSA) analysis is a step

toward a computational security engineering discipline. It

can potentially transform systems security engineering by

rigorously defining security attributes of software systems

and replacing or augmenting labor-intensive, subjective,

human security evaluation. Advantages of the CSA

approach include the following:

- A rigorous method is used to specify security attributes in

terms of the actual behavior of code and to verify that the

code is correct with respect to security attributes.

- The specified security behaviors can provide requirements

for security architectures.

- Traceability capabilities can be defined and verified

outside of the automated processes.

- Vulnerabilities can be well understood, making it easier to

address evolution of code, environment, use, and users.

- The use of constraints provides a mechanism for

explicitly defining all assumptions.

CSA technology addresses the specification of security

attributes of systems before they are built, specification and

evaluation of security attributes of acquired software,

verification of the as-built security attributes of systems, and

real-time evaluation of security attributes during system

operation.

Our future directions include the development of

prototype automation to support application of CSA

technology. This automation will be based on a vision of

human-computer interaction that would complement and

amplify human capabilities for reasoning about software

security attributes during systems development and for real-

time evaluation of a system’s security attributes during

operation. These tools will be constructed in accumulating

increments to maximize earned value and minimize risk.

CSA supports a usage-centric evaluation of security

attributes that can explicitly consider the objectives and

constraints of specific execution environments. Such an

approach will support modeling, analysis, and evaluation of

the security attribute values of software, as constrained by

the policies of specific execution environments. In order for

this approach to be widely used, tools are needed to support

user input and query of security requirements, including

automatic mapping of the model of user-specified

acceptable function calls and safe behavior to the code’s

behavior catalog. The ORNL FX project is developing tools

that will be used to compare behavior catalogs. These FX

tools, combined with the CSA approach and proposed CSA

tools, will support security analysts in the comparison of

security attribute requirements and constraints with behavior

catalogs, thus providing a mechanism for automated

security attribute analysis.

ACKNOWLEDGMENT

We gratefully acknowledge our collaborators at the Oak
Ridge National Laboratory in this research.

REFERENCES

D. Barrett, “U.S. Outgunned in Hacker War,” The Wall Street

Journal, March 28, 2012.

R. Collins, A. Hevner, and R. Linger, “Evaluating a Disruptive

Innovation: Function Extraction Technology in Software

Development,” Proceedings of the 44th Annual Hawaii

International Conference on System Sciences (HICSS44),

Hawaii, January 2011.

R. Linger, H. Mills, and B. Witt, Structured Programming: Theory

and Practice. Reading, MA: Addison Wesley, 1979.

M. Pleszkoch and R. Linger, “Improving Network System Security

with Function Extraction Technology for Automated

Calculation of Program Behavior,” Proceedings of the 37th

Annual Hawaii International Conference on System Sciences

(HICSS-37). Big Island, Hawaii. Los Alamitos, CA: IEEE

Computer Society Press, 2004, pp. 20299c.

M. Pleszkoch, R. Linger, and A. Hevner, “Introducing Function

Extraction into Software Testing,” The Data Base for

Advances in Information Systems, Vol. 39, No. 3, August

2008, pp. 41-50.

K. Scarfone and P. Mell, Guide to Intrusion Detection and

Prevention Systems (IDPS): Recommendations of the NIST,

NIST Special Publication 800-94, Gaithersburg, MD, 2007.

G. Walton, T. Longstaff, and R. Linger, “Technology Foundations

for Computational Evaluation of Software Security

Attributes,” SEI Tech Report CMU/SEI-2006-TR-021, 2006.

G. Walton, T. Longstaff, and R. Linger, “Computational

Evaluation of Software Security Attributes,” Proceedings of

the 42nd Hawaii International Conference on System Sciences

(HICSS-2009), Hawaii, 2009.

