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Abstract— We describe an approach for applying Function 

Extraction (FX) technology to the dynamic testing of security 

in large-scale, operational software systems. FX is used 

proactively as an intrusion detection and prevention system 

(IDPS) within a security infrastructure surrounding the 

operation of a critical software system. An innovative aspect of 

the FX approach is the concept of computational security 

attributes (CSA). The CSA approach to software security 

analysis provides theory-based foundations for precisely 

defining and computing security attribute values. The 

translation of a static security property expressed as an 

abstraction of external data to the dynamic behavior of a 

program expressed in terms of its data and functions is a key to 

the CSA approach for verification of behaviors that meet 

specific security properties. The paper concludes with a 

discussion of future research and development directions for 

applying FX to dynamic security testing. 
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I.  INTRODUCTION 

Recent statements by the FBI’s top cyber cop, Shawn 

Henry, have highlighted the immense challenges of security 

in critical computer systems and data networks (Barrett 

2012). Current public and private security approaches are 

unsustainable. Henry states, “I don’t see how we ever come 

out of this without changes in technology or changes in 

behavior, because with the status quo, it’s an unsustainable 

model.” (emphasis added) 

Our research on the emerging technologies of Function 

Extraction (FX) for software system understanding and 

analysis provides a paradigm change that can result in new 

ways of thinking about the security testing of software 

systems. The objective of FX is to compute the behaviors of 

software systems to the maximum extent possible with 

mathematical precision. FX presents an opportunity to move 

from the current range of slow and costly security testing 

processes to fast and cheap computation of system 

behaviors, including behaviors related to security, at 

machine speeds. Because a principal objective of testing is 

to validate system behaviors and qualities, automated 

computation can be expected to streamline testing processes 

and permit increased focus on system-level issues such as 

security and sustainability (Pleszkoch et al. 2008). 

In this paper, we propose an approach for applying FX 

technology to the dynamic testing of security in large-scale, 

operational software systems. FX is used proactively as an 

intrusion detection and prevention system (IDPS) within a 

security infrastructure surrounding the operation of a critical 

software system. An innovative aspect of the FX approach 

for IDPS is the concept of computational security attributes 

(CSA). The CSA approach to software security analysis 

provides theory-based foundations for precisely defining 

and computing security attribute values (Walton et al. 

2009). The translation of a static security property expressed 

as an abstraction of external data to the dynamic behavior of 

a program expressed in terms of its data and functions is a 

key to the CSA approach to verification of behaviors that 

meet specific security properties.  

The paper concludes with a discussion of future research 

and development directions for applying FX to dynamic 

security testing. 

II. FUNCTION EXTRACTION 

Software behavior computation begins with the observation 

that sequential programs can be regarded as rules for 

mathematical functions or relations.  That is, programs can 

be treated as mappings from domains to ranges, and 

mapping functions can be computed through methods of 

function composition (Linger et al. 1979).  

For illustration, consider the following simple program 

fragment operating on small integers.  It takes in values for 

a, b, and c (used but never set) and produces values for r, s, 

t, w, x1, and x2:    
r    := b*b 

s    := a*c 

t    := 2*a  

w  := sqrt(r – 4*s) 

x1 := (-b + w)/t  

x2 := (-b - w)/t  

Final values for r, s, and t are self-evident, and final values 

for w, x1, and x2 can be easily composed through 

successive algebraic substitution: 
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w = sqrt(r - 4*s) 

    = sqrt(b*b - 4*a*c)   

 

x1 = (-b + w)/t 

     = (-b + sqrt(r - 4*s))/t 

     = (-b + sqrt(b*b - 4*a*c))/2*a  

 

     x2 = (-b - w)/t 

     = (-b - sqrt(r - 4*s))/t 

     = (-b - sqrt(b*b - 4*a*c))/2*a  

 

The final step in each derivation gives the net behavior as: 
true   

 w  := sqrt(b*b - 4*a*c)  

 x1 := (-b + sqrt(b*b - 4*a*c))/2*a  

 x2 := (-b -  sqrt(b*b - 4*a*c))/2*a  

 

 Thus, the behavior of the fragment is to compute the 

familiar formula for the two roots of a quadratic equation 

defined by coefficients a, b, and c, and assign them to 

variables x1 and x2, with the square root of the discriminant 

captured in the final value of w.  Note that these expressions 

are procedure-free.  The right-hand-sides are assigned to the 

left-hand-side variables concurrently. This is a conditional 

concurrent assignment (CCA), the general form of 

expression for computed behavior. In this case, the 

condition is “true” because the program is a sequence 

structure that always executes. This is the as-built 

specification of the program.  If the program contained an 

error or unintended content, it would similarly be revealed 

in the composition of its behavior.   

Programmers engage in this sort of reasoning to 

determine net effects of programs all the time. They have 

learned the semantics of individual instructions, that is, how 

each instruction transforms the state of a program, and must 

mentally compose these functional effects to arrive at an 

understanding of what an entire program written by 

themselves or others does in execution. This is not an easy 

task. As software systems are developed and evolve over 

time, large quantities of composite semantic content are 

continuously created, whether correct or incorrect; secure or 

not secure. 

Effective system development and evolution depends on 

how well these behavioral semantics are understood. The 

problem is compounded by the massive numbers of possible 

paths through programs and the necessity to understand 

them all. It is one thing to do this for small programs, but 

quite another for large ones, where complexity can easily 

overwhelm human comprehension. Because human 

fallibility in mental program composition is a source of 

errors and vulnerabilities in software development, it is 

reasonable to ask if this task can be offloaded to machine 

computation to help free human intelligence and attention 

for more creative tasks in software engineering. 

This question is being addressed in research and 

development being carried out on Function Extraction (FX) 

technology by Oak Ridge National Laboratory (ORNL).  

The objective of FX is to compute the behavior of software 

with mathematical precision to the maximum extent 

possible. As noted, sizable programs can contain a massive 

number of execution paths; however, they are constructed of 

a finite number of nested and sequenced control structures, 

each of which makes a knowable contribution to overall 

behavior. These structures correspond to mathematical 

functions that can be computed in a stepwise process that 

traverses the finite control structure hierarchy. At each step, 

procedural details are abstracted out, while net effects are 

preserved and propagated in extracted behavior.   

FX technology is initially being implemented for 

programs written in or compiled into Intel assembly 

language, with a current emphasis on malware analysis 

(Pleszkoch and Linger 2004) and use of computed behaviors 

to augment or replace certain forms of testing (Pleszkoch et 

al. 2008). The focus of malware analysis is on the use of 

computed behavior to unravel complex program logic and 

remove control flow and no-op block (code with no 

functional effect) obfuscation inserted by intruders, 

followed by computation of the behavior of the remaining 

functional code.  

The overall architecture of an FX system is depicted in 

Figure 1. The starting point is a definition of the functional 

semantics of the programming language. The Function 

Extraction process generally proceeds from transformation 

of an input program into functional form, followed by 

structuring and behavior computation. There is a lot more to 

the process than this, but the figure provides a notional view 

of the major steps involved.  

 

 
 

Figure 1:  The Function Extraction process 

 

Function Extraction has potential for widespread 

application across the software engineering life cycle, as 

discussed in (Collins et al. 2011). At this point, FX is an 

emerging technology that can be built out for many wide-

ranging evaluation and operational applications.  
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III. FX FOR INTRUSION DETECTION AND PREVENTION 

With the use of FX technology, an opportunity exists for 

systems testing and customer acceptance testing to shift 

from defect detection to certification of fitness for use. In 

particular, we highlight the application of FX for the 

purposes of intrusion detection and prevention in 

operational software systems. Intrusion detection is the 

process of monitoring dynamic events in a system and 

analyzing them for indications of violations or threats of 

violations of security policies, acceptable use policies, or 

standard operating procedures for security practices 

(Scarfone and Mell 2007). An intrusion prevention system 

works with the detection mechanism to proactively react 

and attempt to stop security violations. Here we outline FX 

as an element of an intrusion detection and prevention 

system (IDPS). A key aspect is use of FX for the analyses of 

Computational Security Attributes as described in (Walton 

et al. 2006) 

IV. COMPUTATIONAL SECURITY ATTRIBUTES (CSA) 

Fast and reliable analysis of security attributes is vital for 

every sector of our software-dependent society. For 

example, access to enterprise applications and data must be 

restricted to those who can provide appropriate proofs of 

identity. Applications and data must be protected so that 

attempts to corrupt them are detected and prevented. 

Healthcare systems must protect personal data while 

allowing controlled access by authorized personnel. 

Enterprises must be able to demonstrate that every 

accounting change is auditable. The flow of data through 

enterprise applications and the flow of transactions that 

drive the data must be logged and reported as proof of what 

actually happened.  

In the current state of practice, security properties of 

software systems are typically assessed through labor-

intensive evaluations by security experts who accumulate 

system knowledge in bits and pieces from architectures, 

specifications, designs, code, and test results. Ongoing 

program maintenance and evolution limit the relevance of 

even this hard-won but static and quickly outdated 

knowledge. When systems operate in threat environments, 

security attribute values can change very quickly. To further 

complicate matters, security strategies must be sufficiently 

dynamic to keep pace with organizational and technical 

change.  

A fundamentally different approach recognizes and 

leverages the fact that the problem of determining the 

security properties of programs comes down in large 

measure to the question of how the software behaves when 

invoked with stimuli intended to cause harmful outcomes. 

Because security properties have functional characteristics 

amenable to computational approaches, it is appropriate to 

focus on the question “What can be computed with respect 

to security attributes?” The computational security attribute 

approach provides a step toward a computational security 

engineering discipline. The ultimate goal is to develop and 

describe mathematical foundations and their engineering 

automation to permit:  

 rigorous specification, evaluation, and improvement of 

the security attributes of software and systems during 

development, 

 specification and evaluation of the security attributes of 

acquired software, 

 verification of the as-built security attributes of software 

systems, and 

 real-time evaluation of security attributes during system 

operation. 

 

 
Figure 2:  Use of FX for CSA Analysis 

 

While analysts have often characterized many security 

attributes as “non-functional” properties of programs, it 

turns out that they are in fact fully functional and thereby 

subject to FX-style automated analysis. Complete 

definitions of the required behavior of security attributes of 

interest can be created based solely on data and 

transformations of data. These definitions can then be used 

to analyze the security properties of programs. Thus, as 

illustrated in Figure 2, computational security attribute 

(CSA) analysis consists of three steps (Walton et al. 2009):  

1. Define required security behavior. Specify security 

attributes in terms of required behavior during execution 

expressed in terms of data and transformations on data.  

2. Calculate program behavior. Apply function extraction 

to create a behavior catalog that specifies the complete 

“as built” functional behavior of the code.  

3. Compare program behavior to required security 

behavior. Compare the computed behavior catalog with 

required security attribute behavior to verify whether it is 

correct or not.  

Requirements for security attribute behavior must 

explicitly define expected behavior of code in all 



circumstances of interest. Thus, the requirements for 

security attribute behavior must include a minimal definition 

of required behavior for all inputs of interest to the security 

attributes, including desired inputs (for example, an 

authenticated user id) and undesired inputs (for example, an 

unknown user id). Usage environment conditions related to 

security attributes are specified in the same manner as inputs 

to the system. For example, availability of the network 

might be specified by a Boolean value that indicates 

whether or not the network is currently available. Security 

successes and failures are also specified in terms of data. 

For example, system control data can be used to indicate 

whether the current user has been authenticated using a 

trusted authentication mechanism. 

Verification that a security property is satisfied requires 

verification of both the data at rest (i.e., the control data 

values) and the data in motion (i.e., the mechanisms used to 

perform the data transformations). Some common tasks to 

verify data at rest include checking to make sure that a 

specific task (for example, an audit task) will always be 

carried out to validate the contents of a specific control data 

structure. Advantages of this approach to security attribute 

verification include the use of constraints and boundary 

conditions that can make any assumptions explicit. People 

and process issues can be handled by the CSA approach by 

using assumptions and constraints as part of the behavior 

catalogs. Behaviors can embody requirements for a given 

security architecture. The attribute verification process will 

expose security vulnerabilities, making it easier to address 

evolution of code, environment, use, and so forth.  

The CSA verification process can provide important 

opportunities for improved acquisition and third-party 

verification. A “user” of a system might be a person, a 

device, or a software component. The user may be the 

intended user or may be an unexpected and/or hostile user. 

An issue that must be considered with commercial off-the-

shelf (COTS) products and reuse is that the definition of 

“user” embodied in the security behavior requirements may 

not be the same definition that was employed in the COTS 

or reused component. The same issue occurs when unknown 

components are employed as “black boxes” in systems of 

systems. If, in the composition of components or systems, it 

doesn’t matter what a specific “black box” component does 

with respect to security attribute requirements, then that 

component can be used. However, if the behavior of a 

component does matter, it cannot be used until its security 

attributes have been verified. In this case, a behavior catalog 

can be calculated for the component using its executable, 

even if documentation and source code are not available. 

Only externally observable behaviors are of interest to 

security attribute analysis. Thus, while the behavior catalog 

will have to be produced for the entire system in order to 

extract the externally observable behaviors, there is no need 

to expose the algorithm or source code, and there’s no need 

to understand the entire state space.  

V. CSA EXEMPLARS 

Security properties are fully functional and are dependent on 

the execution behavior of software. We briefly describe 

seven security attributes to illustrate the range of CSA 

analyses that can be performed via the use of FX. Three of 

these attributes (confidentiality, integrity, and availability) 

are important to information. The other four attributes 

(authentication, authorization, non-repudiation, and privacy) 

relate to the people who use that information. The 

behavioral requirements for each of these attributes can be 

completely described in terms of data items and constraints 

on their processing. The processing can be expressed, for 

example, as logical or quantified expressions or even 

conditional concurrent assignments, which can be 

mechanically checked against the calculated behavior of the 

software of interest for conformance or non-conformance 

with CSA requirements. A fuller discussion of these CSA 

analyses can be found in Walton et al. (2006, 2009). 

- Authentication: Authentication requires that a trusted user 

has been bound to the behavior. That is, the system will 

only allow the program to be executed if the user has 

previously been determined to be a trusted user. To verify 

authentication, one must examine the net effects on the 

control data related to authentication: verify the data that 

provides evidence that the binding took place, and verify 

that this evidence data was not changed before completion 

of any operation that required authentication. 

 

- Authorization: Authorization requires that a user has the 

right to perform the requested process. To verify that an 

authorized operation took place, one must examine the net 

effects on the control data to verify that it provides evidence 

that authorization occurred before the operation, and that the 

evidence data for the authorization was not changed before 

that operation completed. 

 

- Non-Repudiation: Non-repudiation of data transmission 

requires that neither the sender nor the recipient of the data 

can later refute his or her participation in the transaction. 

Non-repudiation of changes to a dataset requires that the 

means for authentication of changes cannot later be refuted. 

For the purposes of this discussion we treat data change as a 

special case of data transmission, where receipt of the data 

transmission includes making and logging the requested 

change to the dataset. To verify non-repudiation one must 

examine the net effects on the control data related to non-

repudiation. 

 

- Confidentiality: Confidential data access or confidential 

data transmission requires that unauthorized disclosure of 

one or more specific data items will not occur. 

Confidentiality is often described in terms of a security 

policy that specifies the required strength of the mechanisms 

that ensure that the data cannot be accessed outside the 

system. For example, the security policy may require 



verification that approved encryption mechanisms are used 

for the output. To verify confidentiality, one must examine 

the net effects on the control data related to confidentiality. 

 

- Privacy: Privacy requires that an individual has defined 

control over how his/her information will be disclosed. To 

verify privacy, one must examine the net effects on the 

control data related to privacy. 

 

- Integrity Integrity requires that authorized changes are 

allowed, changes must be detected and tracked, and changes 

must be limited to a specific scope. Integrity is defined as a 

property of an object, not of a mission. To verify integrity, 

one must examine the net effects on the control data related 

to integrity. That is, one must be able to: isolate the object, 

isolate all the behaviors that can modify the object, detect 

any modifications to the data, and ensure that all 

transformations of the data across the object are within the 

pre-defined allowable subset. 

 

- Availability: Availability requires that a resource is usable 

during a given time period, despite attacks or failures. To 

verify availability, one must examine the net effects on the 

control data related to availability. To avoid having to 

consider temporal properties, one can specify non-

availability rather than availability (i.e., specify under what 

conditions the program’s behavior catalog do not apply). 

VI. RESEARCH STATUS AND FUTURE DIRECTIONS 

Computational security attribute (CSA) analysis is a step 

toward a computational security engineering discipline. It 

can potentially transform systems security engineering by 

rigorously defining security attributes of software systems 

and replacing or augmenting labor-intensive, subjective, 

human security evaluation. Advantages of the CSA 

approach include the following:  

- A rigorous method is used to specify security attributes in 

terms of the actual behavior of code and to verify that the 

code is correct with respect to security attributes.  

- The specified security behaviors can provide requirements 

for security architectures.  

- Traceability capabilities can be defined and verified 

outside of the automated processes.  

- Vulnerabilities can be well understood, making it easier to 

address evolution of code, environment, use, and users.  

- The use of constraints provides a mechanism for 

explicitly defining all assumptions.  

CSA technology addresses the specification of security 

attributes of systems before they are built, specification and 

evaluation of security attributes of acquired software, 

verification of the as-built security attributes of systems, and 

real-time evaluation of security attributes during system 

operation. 

Our future directions include the development of 

prototype automation to support application of CSA 

technology. This automation will be based on a vision of 

human-computer interaction that would complement and 

amplify human capabilities for reasoning about software 

security attributes during systems development and for real-

time evaluation of a system’s security attributes during 

operation. These tools will be constructed in accumulating 

increments to maximize earned value and minimize risk.  

CSA supports a usage-centric evaluation of security 

attributes that can explicitly consider the objectives and 

constraints of specific execution environments. Such an 

approach will support modeling, analysis, and evaluation of 

the security attribute values of software, as constrained by 

the policies of specific execution environments. In order for 

this approach to be widely used, tools are needed to support 

user input and query of security requirements, including 

automatic mapping of the model of user-specified 

acceptable function calls and safe behavior to the code’s 

behavior catalog. The ORNL FX project is developing tools 

that will be used to compare behavior catalogs. These FX 

tools, combined with the CSA approach and proposed CSA 

tools, will support security analysts in the comparison of 

security attribute requirements and constraints with behavior 

catalogs, thus providing a mechanism for automated 

security attribute analysis. 
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