
 

ORNL/TM-2009-244  

  

 

 

 

 

 

Prognostication of Helicopter Failure 
 

 

 

 

 

 

November 2009 
 

 
Prepared by 

L. M. Hively, Ph.D. 

Oak Ridge National Laboratory 

 

 



 

 

 

 

 

 
 

DOCUMENT AVAILABILITY 
Reports produced after January 1, 1996, are generally available free via the U.S. 
Department of Energy (DOE) Information Bridge: 
 

Web site: http://www.osti.gov/bridge 
 
Reports produced before January 1, 1996, may be purchased by members of the 
public from the following source: 
 

National Technical Information Service 
5285 Port Royal Road 
Springfield, VA 22161 
Telephone: 703-605-6000 (1-800-553-6847) 
TDD: 703-487-4639 
Fax: 703-605-6900 
E-Mail: info@ntis.fedworld.gov 
Web site: http://www.ntis.gov/support/ordernowabout.htm 

 
Reports are available to DOE employees, DOE contractors, Energy Technology Data 
Exchange (ETDE) representatives, and International Nuclear Information System 
(INIS) representatives from the following source: 
 

Office of Scientific and Technical Information 
P.O. Box 62 
Oak Ridge, TN 37831 
Telephone: 865-576-8401 
Fax: 865-576-5728 
E-mail: reports@adonis.osti.gov 
Web site: http://www.osti.gov/contact.html 

 

 

 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute 
or imply its endorsement, recommendation, or favoring by the United 
States Government or any agency thereof. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of 
the United States Government or any agency thereof. 

 



 

 

ORNL/TM-2009-244  

  

 

 

 

 

 

 

 

 

PROGNOSTICATION OF HELICOPTER GEAR FAILURE 

 

 

 

 

L. M. Hively, Ph.D. 

Oak Ridge National Laboratory 

 

 

 

 

 

 

 

 

Date Published: November 2009 

 

 

 

 

 

 

Prepared by 

OAK RIDGE NATIONAL LABORATORY 

P.O. Box 2008 

Oak Ridge, Tennessee 37831-6285 

Managed by 

UT-Battelle, LLC 

for the 

U.S. DEPARTMENT OF ENERGY 

under contract DE-AC05-00OR22725 





 

 iii 

TABLE OF CONTENTS 

 

 

Section Title Page 

 

TABLE OF CONTENTS ............................................................................................................................. iii 

LIST OF FIGURES....................................................................................................................................... v 

LIST OF TABLES ...................................................................................................................................... vii 

ACKNOWLEDGMENTS............................................................................................................................ ix 

ABSTRACT .................................................................................................................................................. 1 

1. INTRODUCTION ................................................................................................................................. 3 

2. BACKGROUND ................................................................................................................................... 5 

3. ANALYSIS METHODOLOGY ............................................................................................................ 6 

4. RESULTS ............................................................................................................................................ 10 

5. CONCLUSIONS ................................................................................................................................. 15 

6. REFERENCES .................................................................................................................................... 17 





 

 v 

LIST OF FIGURES 

 

 

Figure Page 

 

Figure 1.  US Army's OH-580C helicopter. ................................................................................................ 23 

Figure 2.  Pictures of the OH-58C gearbox ................................................................................................. 24 

Figure 3.  Spiral-bevel pinion gear from OH-58C helicopter before removal of the broken tooth. ............. 25 

Figure 4.  Typical data from the OH-58C helicopter gearbox experiment. ................................................. 26 

Figure 5.  Typical measures of data from the OH-58C helicopter gearbox experiment .............................. 28 

Figure 6.  Typical measures of data from OH-58C helicopter gearbox experiment. ................................... 29 

Figure 7.  Typical measures of data from OH-58C helicopter gearbox experiment .................................... 30 

Figure 8.  Typical measures of data from OH-58C helicopter gearbox experiment. ................................... 31 

Figure 9.  Typical measures of data from OH-58C helicopter gearbox experiment .................................... 32 

Figure 10. Traditional nonlinear measures of the first accelerometer channel. ........................................... 33 

Figure 11.  Traditional nonlinear measures of the second accelerometer channel. ...................................... 34 

Figure 12.  Traditional nonlinear measures of the third accelerometer channel .......................................... 35 

Figure 13.  Traditional nonlinear measures of the fourth accelerometer channel ........................................ 36 

Figure 14.  Traditional nonlinear measures of the fifth accelerometer channel. .......................................... 37 

Figure 15.  Phase-space dissimilarity measures versus time for accelerometer channel. ............................. 38 

Figure 16.  Best forewarning of gear failure via the composite phase-space dissimilarity measure ............ 39 

Figure 17.  Best forewarning of gear failure via the composite phase-space dissimilarity measure ............ 40 

Figure 18.  Best forewarning of gear failure via the composite phase-space dissimilarity measure ............ 41 

Figure 19.  Best forewarning of gear failure via the composite phase-space dissimilarity measure. ........... 42 

 

 

 

 

 





 

 vii 

LIST OF TABLES 

 

 

Table Page 

 

Table 1. Summary of Forewarning Criteria for Each Channel via Phase-Space Dissimilarity .................... 12 

Table 2. Summary of Measures for Each Channel ...................................................................................... 13 

Table 3. Summary of Recent Machine Failure Forewarning Results .......................................................... 15 

 





 

 ix 

ACKNOWLEDGMENTS 

 

 

This work was sponsored by the U.S. Army Research Laboratory (ARL) under work-for-others inter-agency 

agreement, Proposal #2374-S714-A1, “Specialized R&D Support for the RDECOM,” Task 3.2 (In Support of 

Technology Development, Demonstration, and Validation). Oak Ridge National Laboratory is managed for the 

U.S. Department of Energy by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725. We thank ARL 

for providing the data that were analyzed here. 





 

 

 
ABSTRACT 

 

The U.S. Army needs prognostic analysis of mission-critical equipment to enable condition-based maintenance 

before failure. ORNL has developed and patented prognostic technology that quantifies condition change from 

noisy, multi-channel, time-serial data. This report describes an application of ORNL’s prognostic technology to 

failure forewarning for the main-rotor gearbox of the Army’s OH-58C Kiowa (Bell 206B) helicopter. The first 

objective of this work was identification of easily-acquired, process-indicative data, namely accelerometer data. 

The second objective of this work was avoidance of the garbage-in-garbage-out syndrome via data quality 

analysis, which did not identify any problems with the accelerometer data. The third objective was condition-

change analysis to forewarn of a seeded fault in the spiral-bevel pinion gear. ORNL’s phase-space dissimilarity 

approach provides forewarning of the gear failure from the accelerometer data. We conclude that ORNL’s 

technology is an excellent candidate to meet the U.S. Army’s need for prognostication.  
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1.      INTRODUCTION 

 
Real-time prognostication of mission-critical equipment is required to avoid unexpected failures. Typical 

failures include structural cracking, misalignment, imbalance, short-circuit, broken gears, bearing faults, dust 

clogging, exhaust deposits on internal parts, and severe wear from wind-blown particulates. Recent 

information-technology developments (e.g., low-form-factor micro-processors; low-cost, wireless, reduced-size 

sensors; mesh networking) can now be combined with advanced-prognostics software for longer prediction 

horizons, while adding minimal weight and bulk.  

 

ORNL staff have developed and patented a novel, advanced statistical method that detects condition change 

from noisy, multi-channel, time-serial data. ORNL has demonstrated the prognostic technology for both 

biomedical
1-15

 and machine applications
15-26

. Specific machine demonstrations to date include both accelerated 

failure tests and seeded faults in motors and motor-driven components: 

 Detection of progressively larger drill bit wear from spindle-motor current
21

; 

 Distinction between different states for (un)balanced centrifugal pump from motor power
21

;  

 Detection of progressively larger crack in rotating blade from vibration and electrical power
22

; 

 Forewarning of gear failure from torque and vibration data
22

; 

 Forewarning of bearing failure from vibration data
22

; 

 Motor faults (air-gap offset, cut rotor, turn-to-turn short, imbalance) from power
23

; 

 Imbalance and misalignment faults in a motor-driven pump from electrical power
24

; 

 Forewarning of structural failure from stress and strain data
18-20, 25

. 

The technology readiness level (TRL) is five, involving integrated, high-fidelity demonstration of the 

technology components for realistic environments.  

 

The model-independent, data-driven approach quantifies dynamical change in nonlinear systems from time-

windowed data sets. The method first rejects inadequate-quality data. Next, a novel filter removes confounding 

artifacts (e.g., fundamental sinusoid in electrical data). The artifact-filtered data then are converted to a discrete 

dynamical signature in the form of a statistical distribution function (DF) via time-delay phase-space 

reconstruction. Dissimilarity measures quantify condition change between the baseline (normal state) DF and 

subsequent test case DFs. Several sequential occurrences of the dissimilarity measures above a threshold 

indicate significant change, as a forewarning of failure. This approach also provides an indication of failure 

onset. This approach has been demonstrated for motors and motor-driven components over more than three 

orders of magnitude in power (0.25 to 800-HP). PDF copies of our reports
1-26

 and patents
27-34

 are available at 

the author’s publications link, http://computing.ornl.gov/cse_home/staff/hively.shtml.  

 

The objectives of this work are: (1) identification of easily-acquired, process-indicative data for the machine’s 

health status; (2) data quality analysis to avoid the garbage-in-garbage-out syndrome; (3) condition-change 

analysis to indicate operational stress under non-ideal operation and machine degradation in proportion to the 

operational stress or degradation; and (4) forewarning of failure if it occurs. The long-term goal is 

determination of the remaining useful operational life, or equivalently an estimate for the time to failure. This 

report is organized as follows. Section 2 provides background information for the work. Section 3 describes the 

analysis methodology. Section 4 discusses the results. Section 5 presents the conclusions. 
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2.     BACKGROUND 

 

Reliable prognostication is very difficult. The major roadblocks include
35-37

: (a) an incomplete understanding 

of fault evolution and failure physics (e.g., different degradation rates for various machine components); (b) the 

lack of predictive methodologies for unsteady failure signatures; (c) the need for up-to-date trends in 

component condition and life span; (d) ignorance about controlling parameters (e.g., initial condition, service 

environment, and maintenance history); (e) emulation of a real operating environment. Previous ORNL work
16

 

provided a brief history of dynamical machine analysis over the last 40 years, which will not be repeated here. 

Our present approach addresses items (a)-(c) by quantifying the (non-stationary) condition change as a 

sequence of nonlinear statistical signatures from process-indicative data; item (d) by associating change in the 

controlling parameter with the dynamical signature of the equipment response; and item (e) by acquisition and 

analysis of test data that are similar to real-life operations. 

 

Condition-based maintenance
37

 enhances reliability and operational readiness by indicating the equipment’s 

present state (diagnostic), as well as estimating its future condition (prognostic). The advantages of condition-

based maintenance include: increase in availability; reduction in downtime; reduction in mission aborts arising 

from equipment failure; improvement in management and planning of maintenance; lower total maintenance 

cost; verification of equipment condition prior to deployment; identification of repair/replacement needs before 

failure; reduction in needs for additional diagnostic equipment; and greater safety. The bottom line is higher 

mission success rate at lower cost in terms of lives, equipment, and dollars. 

 

The present application is forewarning of helicopter gear failure. Frequent failures occur in the main-rotor 

gearbox. The sponsor provided failure-test data on a gearbox from the OH-58C Kiowa (Bell 206B) helicopter 

(maximum gross weight of 4,000 pounds), which is typically used for scouting missions (Figure 1). This report 

discusses failure prognostication of the spiral-bevel pinion gear in the OH-58C gearbox (Figure 2) via 

accelerated testing after introduction of a seeded fault (Figure 3). 
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3.     ANALYSIS METHODOLOGY 

 
For the reader’s convenience, we summarize the analysis methodology

15-16
, utilizing three basic approaches, 

namely conventional statistical measures, traditional nonlinear measures, and ORNL’s novel phase-space 

dissimilarity measures. A process-indicative scalar signal, e, is sampled at equal time intervals, , starting at an 

initial time, t0, yielding a time-serial sequence of N points, ei = e(t0 + i). Artifacts are removed from this data 

with a zero-phase quadratic filter
34

 that performs better than conventional filters. This filter uses a moving 

window, with the same number of data points, w, on either side of a central point. A parabola is fitted in the 

least-squares sense over this window of 2w+1 data points. The central point of the fit is an estimate the low-

frequency artifact, fi. The residual (artifact-filtered) signal, gi = ei – fi, has essentially no low-frequency artifact 

activity. All subsequent analysis uses this artifact-filtered data, gi. 

 

Conventional statistical measures
38

 (CSM) provide a general characterization of data. Typical CSM are the 

mean: g  = i gi/N (the sum over i, i, includes N points in the analysis window); the absolute average 

deviation, a = i |gi – g |/N; the sample standard deviation,  = [i (gi – g )
2
/(N – 1)]

1/2
; and the minimum, gn, 

and maximum, gx, in the signal. Higher moments are skewness (third moment): SK = i (gi – g )
3
/N

3
, and 

kurtosis (fourth moment), KT = i (gi – g )
4
/N

4
 – 3. Time-scale measures include the average number of time 

steps per cycle: m = N/[(nc – 1)/2]  2N/nc, for nc >>1 (nc = average number of crossings of the mean); and the 

first zero, Z, in autocorrelation function, which is defined as: A(j) = i (gi – g )(gi+j – g )/(N – j)
2
. CSM are 

useful in the analysis of linear processes, but typically provide inconsistent discrimination of condition change 

in nonlinear systems. They are included here for completeness and comparison. 

 

Traditional nonlinear measures (TNM) can be useful for characterization of nonlinear data. One is the 

maximum-likelihood correlation dimension
39-40

, D = –M{ij ln[(ij/0 – n/0)/(1 – n/0)]}
-1

, which measures 

complexity. Here, M is the number of randomly-sampled pairs of phase-space (PS) points. The distance 

between PS-point pairs, i and j, is ij = max(0k m–1) |gi+k – gj+k|, where m is the average number of data 

points per cycle, as defined above. The distance n is the scale length that is associated
 
with noise. Distances 

are normalized with respect to a nominal scale length, 0, which is a balance between sensitivity to local 

dynamics (typically at 0
 
 a) and avoidance of excessive noise (typically at 0

 
≥ a).  Here, the symbol, a , 

denotes the absolute average deviation (defined in the paragraph on CSM) as a robust indicator of variability
41

.  

 

Another typical TNM is Kolmogorov entropy (K-entropy), K, which measures the rate of information loss per 

unit time (e.g., bits per second as a measure of predictability), and is the sum of the positive Lyapunov 

exponents. Positive, finite K is generally viewed as an indication of chaotic dynamics. Very large entropy 

indicates a stochastic (totally unpredictable) phenomenon. K is estimated from the average number of time 

steps, bi, for two PS points, initially
 
within   0, to diverge to 

 
 > 

 
0. The maximum-likelihood form of 

Schouten et al.
41

 is K = –fs log(1 – 1/b), with b = i bi/M for M point pairs. The data-sampling rate is fs.  

 

A third TNM is the mutual information function (MIF), which measures average bits of information that can be 

inferred from one measurement about a second, as a function of the time delay between the two signals. 

Shannon and Weaver
42

 developed the MIF, which was later applied to time series
43

. The first minimum in the 

MIF, M1, gives the average de-correlation time. The MIF is: I(q,r) = I(r, q) = H(q) + H(r) – H(r, q). Here, H is 

the entropy: H(q) = –i P(qi) log2[P(qi)] and H(q, r) = –ij P(qi, rj) log2[P(qi, rj)]. One set of measurements is 

denoted by Q = {q1, q2, .  .  , qN}, with associated occurrence
 
probabilities, P(q1), P(q2), .  .  .  , P(qN). A second

 

measurement set is R = {r1,
 
r2, .  .  .  , rN}, with a time delay

 
relative to Q, and with occurrence

 
probabilities 

P(r1), P(r2), .  .  . ,
 
P(rN).

 
P(qi, rj) is the joint probability that both states occur simultaneously. TNM usually do 

a poor job of discriminating condition change, but are also included for comparison and completeness. 
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The gi-data are converted into S discrete (symbolized) values
16

, si, namely 0  si  S – 1. Equiprobable symbols 

are formed by ordering all N of the base case artifact-filtered, time-serial data points from the smallest to largest 

value. The first N/S of these ordered values correspond to the first symbol, 0. Ordered data values (N/S) + 1 

through 2N/S correspond to the second symbol, 1, and so on. Equiprobable symbols have non-uniform 

partitions in the signal amplitude with the same occurrence frequency of gi values by construction, and thus 

have no information about the dynamical structure. In contrast, symbols with uniform partitions (uniform 

symbols), si = S (gi - gn)/(gx - gn), have inherent dynamical structure before beginning the PS reconstruction, 

where gx and gn are the maximum and minimum values of the gi-data, respectively. Thus, one advantage of 

equiprobable symbols is that dynamical structure arises only from the PS reconstruction, as described below. 

Moreover, large negative and large positive values of gi have little effect on equiprobable symbolization, but 

dramatically change the partitions for uniform symbols. The variable, UE, designates uniform (UE = 0) or 

equiprobable (UE = 1) symbols. 

 

The time-serial si-data are next converted into a geometric object via phase-space (PS) reconstruction via time-

delay vectors, y(i) = [si, si+ , . . . , si+(d–1)], partitioning the PS into S
d 
hypercubes or bins

16
. Each bin can be 

identified by a unique integer, J, via base-S arithmetic, J = m si+m S
m
, where the summation, m, is over the 

range 0  m  d-1. Additional data channels may add more information about the inter-connected dynamics, 

implying that a multi-channel PS-vector could contain more information than a single channel. The multi-

channel PS vector is: y(i) = [si(1), si+(1) , . . . , si+(d–1)(1), …, si(C), si+(C) , . . . , si+(d–1)(C)]. Here, the symbol, 

s(k) denotes values from the k-th channel, 1  k  C, for up to C channels. Now, the symbolization divides the 

multi-channel PS in S
Cd

 bins, where the bin identifier is J =k m s(k)i+m S
m+d(k-1)

. The parameter choice 

determines how well the PS reconstruction characterizes the dynamics. For example, an excessively large 

embedding dimension could result in over-fitting of real data with finite length and noise. Moreover, different 

observables of a system contain unequal amounts of dynamical information,
 
implying that PS reconstruction 

could be easier from one choice of variable(s), but more difficult or impossible from another choice. This 

analysis seeks to balance these caveats for finite-length noisy data. 

 

Conversion of the time-serial data into discrete PS states allows the construction of a statistical distribution 

function (DF) by counting the number of PS points that occur in each bin
16

. This DF is the discretized density 

of PS states. QJ and RJ denote the population of the J-th DF bin for the base case (nominal state), and for a test 

case (test state), respectively. The test case is compared to the base case by dissimilarity measures, namely the 

χ
2
 statistic and L1 distance:  

 

    
J

JJJJN RQRQ ,/
22

          (1) 

 
J

JJN RQL .           (2) 

The sum in Eqs. (1) - (2) is over all of the populated PS bins. In this work, N
2 
is not an unbiased statistic for 

testing a null statistical hypothesis but rather is a relative measure
7
 of dissimilarity between the two DFs. The 

L1 distance is the natural metric for DFs by its direct relation to the total invariant measure on the attractor. 

These measures account for changes in the geometry and visitation frequency of the attractor. Consistent 

calculation requires the same number of points in both the base and test case DFs, identically sampled; 

otherwise the distribution functions must be rescaled. 

 

The accuracy and sensitivity of the PS reconstruction can be enhanced by connecting successive PS points as 

prescribed by the underlying dynamics, y(i)  y(i + 1). A discrete representation of the process flow is formed 

by adjoining two successive vectors from the d-dimensional reconstructed PS, Y(i) = [y(i), y(i + 1)]. Y(i) is a 

2d-dimensional, connected-phase-space (CPS) vector. As before, Q and R denote the CPS DFs for the base 

case and test case, respectively. The measures of dissimilarity between these two CPS DFs are defined via the 

L1-distance and χ
2 
statistic, as before: 
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    
JK

JKJKJKJKC RQRQ ,/
22

         (3) 

 
JK

JKJKC RQL .           (4) 

The subscript, C, denotes CPS measures in Eqs. (3) - (4), while the subscript, N, in Eqs. (1) - (2) denotes non-

connected  PS states. The subscripts, J and K, are identifiers for the initial, y(i), and final, y(i+1), PS states, 

respectively. The value  = 1 results in d – 1 components of y(i + 1) being redundant with those of y(i); this 

redundancy is allowed to accommodate other data such as discrete points from two-dimensional maps. CPS 

measures have higher discriminating power than their non-connected counterparts. Indeed, these measures 

rigorously satisfy the inequalities
6
: N

2
  LN, C

2
  LC, LN  LC, and N

2
  C

2
.  

 

The quantities in Eqs. (1) – (4) are called phase space dissimilarity measures (PSDM). These measures 

discriminate between different chaotic regimes, and transitions between regular and chaotic regimes. Such 

discrimination is impossible with traditional nonlinear measures (e.g., Lyapunov exponents, Kolmogorov 

entropy, correlation dimension
44

). Straightforward methods exist
45-47 

for discriminating between regular and 

chaotic dynamics, or for detecting the transition between these regimes. The reason for this improvement is 

rather simple: discrimination by TNM is based on a difference of averages, while discrimination via PSDM is 

based on summing the absolute value of differences. 

 

The disparate range and variability of these measures are difficult to interpret, especially for noisy data. A 

consistent means of comparison is via normalized dissimilarity measures (NDM)
5-6

, which are defined by the 

following form: U(V) = |Vi – V |/1, as the number of standard deviations, 1, that the test case deviates from 

the base case mean. The base case corresponds to the nominal-state dynamics. V denotes a phase-space 

dissimilarity measure from the set, V = {LN, LC, N
2
, and C

2
}. We obtain the mean value,V , of the 

dissimilarity measure by comparison among the B(B–1)/2 unique combinations of the B base case cutsets, with 

a corresponding sample standard deviation, 1. We subsequently compare each contiguous, non-overlapping 

test case cutset to each of the B base case cutsets, and obtain the corresponding average dissimilarity value, Vi, 

of the i-th analysis window for each dissimilarity measure. A statistically significant trend in the NDM 

indicates equipment degradation for failure forewarning.  

 

Our previous work
4, 21-24

 found that the NDM are sensitive measures of condition change, but that further 

improvements are needed for an explicit indication of failure. A specific measure for end-of-life forewarning
16

 

is the sum of the four PSDM. The results of Section 4 illustrate that this composite, Ci for the i-th cutest, 

displays the same trends as the individual PSDM and is more robust than any one of the PSDM alone.  

 

Ci = U(N
2
) + U(C

2
) + U(LN) + U(LC).       (5) 

The best analysis parameters, {N, w, B, S, d, , UE}, depend not only on the system, but also on the specific 

data under consideration. From experience, the longest analysis window of N points is best, limited by the total 

length of each data record, N = 225,000, as explained below. The number of base case cutsets is B =10, as a 

balance between a reasonably short quasi-stationary period of “normal” dynamics and a sufficiently long period 

for statistical significance. Figure 4 shows that the accelerometer signals have no artifact, and hence this feature 

of the analysis is not used. Our analysis over the remaining parameters, {S, d, , UE}, proceeds as follows: (a) 

choose the parameter set; (b) compute the normalized PS dissimilarity measures for the specific machine data; 

and (c) exhaustively search over the parameters for the best indication of condition change. More specifically, 

the analysis searches over the phase-space parameters for the earliest forewarning time. 
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4.      RESULTS FOR THE HELICOPTER-GEAR FAILURE 

 
A series of experiments

48-60
 were performed to predict failures in the OH-58C Kiowa helicopter (Figure 1), 

which the Army has used since 1969. The specific failure involved the main-rotor gearbox (Figure 2) with a 

maximum input torque of 350 N-m (3100 in-lb), a maximum input speed of 6060 RPM, and a net reduction 

ratio of 17.44:1. Tests used a test stand at the NASA-Glenn Research Center in Cleveland, Ohio. 

 

The specific gear under study
53-54

 is a 19-tooth spiral-bevel pinion that is driven directly by the input shaft to 

the gearbox. This pinion gear meshes with a 71-tooth ring gear in the first reduction stage. A seeded fault 

(notch) was formed  by electro-discharge machining in the fillet region of one tooth of the spiral-bevel pinion 

(top of Figure 3) in order to initiate failure cracking. The gearbox was run at 1.5-times the maximum design 

torque and at maximum input speed to accelerate the failure of this seeded fault. The experimental diagnostics 

indicated failure onset after 4.15 hours at this torque overload. A 60X-microscopic visual inspection found no 

crack at 4.41 hours. The proximity probe data showed a once-per-revolution spike at 4.4723 hours, which was 

roughly 9 minutes before complete tooth separation from the gear at 4.621 hours (bottom of Figure 3). 

 

The experimental diagnostics included five accelerometers (A1 – A5). Figure 2 shows the locations of these 

sensors. The present analysis uses the raw accelerometer data, as discussed in Sec. 3. These data
53-54

 were 

sampled at 150 kHz with 12-bit precision for 1.5 seconds (225,000 points in each of 8 channels) during 

successive, contiguous, non-overlapping 15-second intervals. Each data record was saved to a separate, 

uniquely-named file (EPInnnn.DAT) in binary format. Here, nnnn is the file sequence number, which ranged 

from 0001 to 1008 prior to the 60X-visual examination, and from 0001 to 0039 after the visual examination, 

for a total of 1047 usable records over a total test-data length of 4.3635 hours.  The data were extracted from 

the binary files and concatenated into a single dataset for this analysis. Figure 4 shows the complex, nonlinear 

dynamical signatures from the five accelerometers (rows) with successively greater resolution in time (columns 

from left to right). The Fourier spectra (right-most column of Figure 4) have broad high-frequency tails with no 

dominant frequency, which is characteristic of complex, nonlinear data.  

 

Data quality analysis verifies important features in the data: proper number of data points; any intervals with 

unchanged amplitude; saturation at high or low limits as an indicator of improper data scaling; consistent 

amplitude across datasets in the test sequence; adequate sampling rate; excessive periodic content; and 

excessive noise. An adequate sampling rate should span the de-correlation time with a sufficient number of 

time samples. The de-correlation-time measures are the first minimum in the mutual information function (4 

time steps) and the first zero in the auto-correlation function (4 time steps). Excessive periodicity obscures the 

underlying nonlinear dynamics and has more than 50% of the total area under the two largest peaks in the 

Fourier spectrum versus frequency. Excessive noise obliterates the useful information with disorderly signal 

values. Consequently, a measure of order in the signal (Shannon entropy, E) versus the number of uniform data 

symbols (S) allows determination of the average number of bits of information (b) in the data as the maximum 

in E versus S = 2
b
; less than five bits of information corresponds to excessive noise. The garbage-in-garbage-

out syndrome is avoided by rejection of data that fails one or more of these tests. This quality check did not 

indicate any problems with the five accelerometer channels, which are the focus of this analysis. 

 

Accelerometers A1 and A2 were co-located on the gearbox, and acquired data in the transverse (X) and vertical 

(Z) directions (Figure 2). Axial acceleration (Y direction) was not obtained at this same location. Axial 

acceleration can only be inferred from accelerometers A3 – A4 for analysis of 3-dimensional vibration power.  

The gearbox housing is made of a magnesium alloy, which is not a particularly rigid material, and allows 

transmission of vibrations from one accelerometer location to another. These confounding effects are 

confirmed by careful comparison of the data from accelerometers A3 and A4 (Figure 4), which clearly have 

very different dynamical signatures. This comparison allows for a sound propagation (4940 m/s) across the 

gearbox (diameter ~1m), giving a time delay between A3 and A4 of 0.2ms, or 30 time steps at a sampling rate 

of 150 kHz. Thus, the present data are inappropriate to form three-dimensional vibration power. 
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Decker and Lewicki
54

 provide the following insights into the results from the five accelerometer channels. 

Accelerometers A1-A2 showed the spiral bevel harmonics as the dominant components; A4-A5 also had 

significant spiral bevel mesh frequency components. Accelerometer 3 obtained the highest level of vibration, 

involving the spiral bevel mesh and the planetary mesh. A2 provided the best response with motion sensitivity 

in the transverse (X) direction and a location closest to the bevel-pinion gear. A3 - A4 provided significant 

indication of damage, being motion-sensitive in the X-Y plane, but receiving attenuated signals due to their 

more distant location from the pinion mesh. A1 and A5 provided the least information, with indication of 

damage after the other accelerometers. A1 is the only accelerometer that is motion-sensitive in the vertical 

direction. A5 did not show a major effect, perhaps because it was mounted differently from the others on the 

top cover stud bracket. The use of various linear measures did not allow failure forewarning
54

 in A1-A5. 

 

The considerations of the previous two paragraphs leave two options for analysis of these data. One involves 

use of data from co-located sensors A1 (Z-direction) and A2 (X-direction) to obtain vibration power in the X-Z 

plane only. The second involves analysis of the accelerometer data from one (or more) of the individual five 

accelerometers, A1 – A5. However, different observables have unequal amounts of dynamical information
38

,
 

implying that dynamical analysis could be easier from one variable, but more difficult or impossible from 

another. Consequently, the present work analyzes the uni-axial data from each of the five accelerometers. 

 

Figure 5 shows linear statistical measures for the first accelerometer channel (A1). The top plot shows the 

maximum (gx) in red, the standard deviation () in green, the absolute average deviation, (a) in blue, and the 

minimum (gn) in black. The minimum and maximum vary erratically around a nominal value, showing no 

forewarning of the failure and no indication of failure onset at the end of the data. The standard deviation and 

absolute average deviation vary slightly during the first two hours of the test, then are constant, and finally 

decrease slightly in the last fifteen minutes before failure. This last shift is not significant, because its variation 

is consistent with that of the first two hours. Consequently, these measures provide no forewarning and no 

indication of failure. The second plot from the top is skewness, which varies randomly from  -0.065 to -0.05 

for time <4.4 hours, then decreases systematically to <-0.08 as an indication of failure onset. The third plot 

from the top is kurtosis, which varies irregularly between -0.5 and -0.35 during the first 4.25 hours, and then 

rises abruptly to >-0.35 after 4.25 hours as an indication of failure onset. The second plot from the bottom 

shows the number of time steps per cycle (TCYC), which varies between 36 and 40 during the first 4.25 hours, 

then drops abruptly to <36 as an indication of failure onset. The bottom plot displays the number of time steps 

to reach the first zero (Z1) in the auto-correlation, which constant at 17 (with two spikes to 18) during the first 

2.3 hours, and then varies erratically between 17 and 18 during the second half of the test. This latter increase 

in variability is neither a clear forewarning nor a clear indication of failure. The number of bits (b) of precision 

in the data is a constant, b=9, for all times and all channels, and consequently is not shown. Figures 6 – 9 

display analogous results for accelerometer channels, A2 – A5, respectively. 

 

Figure 10 shows traditional nonlinear measures for the first accelerometer channel (A1). The top plot shows 

the first minimum in the mutual information function, M1, with spikes between 17 and 18 time steps. The 

frequency of these spikes increases erratically to 4.25 hours. M1 is constant at 17 time steps from 4.25-4.45 

hours, followed by more spikes. These features do not provide clear forewarning or indication of failure onset. 

The middle plot displays the correlation dimension, D, which varies erratically with no clear forewarning or 

indication of failure onset. The bottom plot illustrates the Kolmogorov entropy, K, which varies irregularly 

with no clear forewarning. The rise in K after 4.25 hours is irregular and has the same range as the preceding 

period, and consequently is not a clear indication of failure onset. Figures 11-14 show analogous traditional 

nonlinear measures for accelerometer channels, A2 – A5, respectively. 

 

Figure 15 displays typical PSDM for accelerometer channel, A1. The top four subplots show the individual 

PSDM for N
2
, C

2
, LN, and LC. The bottom subplot shows the composite PSDM, Ci, with the same trends as 

each individual PSDM. Consequently, the forewarning analysis focuses on the composite measure, Ci which 

varies erratically about some nominal value. Failure forewarning corresponds to several successive values of 

this composite measure above a threshold, the determination of which is discussed next. 
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Figure 16 (top subplot) shows m Cm, which is the cumulative sum of the composite measure from the 

beginning of the test to the i-th analysis window. The cumulative sum increases roughly linearly over the initial 

testing time. Consequently, a straight line through the origin can be fitted in a least-squares sense to the 

cumulative sum. The middle subplot of Figure 16 shows the standard deviation (SD) between the straight-line 

fit and the cumulative sum. The step-function jumps in the SD arise from isolated spikes in Ci (blue curve in 

Figure 16 bottom) during the first 1.5 hours of the test. The spikes in Ci (and the resultant step-function jumps 

in the SD) are not statistically significant, and are ignored in the subsequent analysis. A minimum in SD occurs 

at 2.3 hours, as denoted by the red star (*) in the middle subplot of Figure 16. The slope of this best-fit straight 

line corresponds to a threshold value, UFW =2.7015 (green horizontal line in Figure 16 bottom), which is also 

labeled at the bottom left of that subplot. The bottom subplot illustrates that most Ci values fall below this 

threshold before 2.43 hours, corresponding to nominal gearbox operation.  

 

A determination of failure forewarning is also shown in Figure 16 (bottom), corresponding to Ci>UFW after 

2.43 hours. The number of successive values of Ci>UFW after 2.43 hours is 464, which is shown inside the 

parentheses, next to UFW=2.7015 in the bottom subplot. Before 2.43 hours (specifically, between 2.3 and 

2.425), the largest number of successive occurrences of Ci>UFW is 31, as denoted by “(31)” just below that time 

segment in the bottom subplot. This false indication is excluded by requiring >31 successive occurrences 

above the threshold. The forewarning criterion then is 32 successive occurrences of Ci>UFW =2.7015; the start 

of forewarning is at 2.56 hours (32 time windows after 2.43 hours at 15 seconds per time window). 

 

Figure 16 (bottom) further displays the determination of failure onset. The smallest value of Ci during the 

failure onset period is UFAIL=21.68; the red horizontal line corresponds to this failure threshold. The value of 

CiUFAIL occurs 40 times in succession. These two parameters are explicitly labeled as “UFAIL=21.68(40)” in 

the upper right of Figure 16 (bottom). Prior to failure onset only two values occur in succession above UFAIL, as 

denoted by “(2)” near the peak at 0.6 hours. Consequently, the failure-onset criterion is 3 successive 

occurrences of Ci>UFAIL=21.68. Analogous plots for accelerometer channels A2, A3, and A5 are displayed in 

Figures 17-19. Table 1 summarizes the results on the basis of the results in Figures 16 – 19. The analysis found 

no forewarning or failure onset in accelerometer channel A4, as denoted by, “--”, in the A4 column. 

 

Table 1. Summary of Forewarning Criteria for Each Channel via Phase-Space Dissimilarity 

 

Feature 

Accelerometer Channel Designation 

A1 A2 A3 A4 A5 

Forewarning threshold, UFW 2.7015 4.3122 2.7836 -- 16.4579 

Successive occurrences above UFW 32 52 13 -- 64 

Threshold for failure onset, UFAIL 21.68 27.425 1.2519 -- 19.24 

Successive occurrences above UFAIL 3 10 33 -- 24 

Number of phase-space symbols, S 2 2 11 -- 12 

Dimension of phase space, d 3 3 3 -- 3 

Phase-space, time-delay lag,  30 10 12 -- 20 

Start of forewarning (hours) 2.56 2.58 4.29 -- 4.18 

Longest non-forewarning time (hours) 2.30 – 2.47 2.15 – 2.36 1.27 – 1.31 -- 2.64 – 2.90 

Start of failure indication (hours) 4.21 4.24 4.20 -- 4.29 

 

Table 2 summarizes the results versus accelerometer channel. The abbreviations are: no forewarning (NF), no 

indication of failure (NIF), indication of failure onset (IFO), and failure forewarning (FF). The last two are in 

bold font, consistent with the goal of this analysis.  Kurtosis indicates failure onset in 4 channels (A1, A2, A4, 

and A5). Skewness indicates failure onset in 3 channels (A1 – A3). Two channels indicate failure onset via 

time steps per cycle (A1 – A2) and first zero in the autocorrelation (A2 – A3). First minimum in the mutual 

information indicates failure onset in one channel (A2). These weak indications are consistent with earlier 

 work by Lewicki et al.
53-54

. The PSDM show forewarning and failure onset in 4 channels (A1, A2, A3, A5). 
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Table 2. Summary of Measures for Each Channel 

 

Measure 

Accelerometer Channel Designation 

A1 A2 A3 A4 A5 

Maximum NF   NIF NF   NIF NF   NIF NF   NIF NF   NIF 

Minimum NF   NIF NF   NIF NF   NIF NF   NIF NF   NIF 

Standard deviation NF   NIF NF   NIF NF   NIF NF   NIF NF   NIF 

Absolute average deviation NF   NIF NF   NIF NF   NIF NF   NIF NF   NIF 

Skewness NF   IFO NF   IFO NF   IFO NF   NIF NF   NIF 

Kurtosis NF   IFO NF   IFO NF   NIF NF   IFO NF   IFO 

Time steps per cycle NF   IFO NF   IFO NF   NIF NF   NIF NF   NIF 

First zero in autocorrelation function NF   NIF NF   IFO NF   IFO NF   NIF NF   NIF 

First minimum in mutual information NF   NIF NF   IFO NF   NIF NF   NIF NF   NIF 

Correlation dimension NF   NIF NF   NIF NF   NIF NF   NIF NF   NIF 

Kolmogorov entropy NF   NIF NF   NIF NF   NIF NF   NIF NF   NIF 

Composite phase-space dissimilarity FF   IFO FF   IFO FF   IFO NF   NIF FF   IFO 
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5.     CONCLUSIONS 

 
This work analyzed accelerometer data from the Army’s OH-58C helicopter gearbox. The specific measures 

are conventional statistical measures (CSM), traditional nonlinear measures (TNM), and phase-space 

dissimilarity measures (PSDM). CSM are minimum, maximum, average, sample standard deviation, skewness, 

kurtosis, average time steps per cycle, and first zero in the auto-correlation function. The TNM include first 

minimum in the mutual information function as a measure of decorrelation time, correlation dimension as a 

measure of complexity, and Kolmogorov entropy as a measure of information loss rate. PSDM are the 
2
 

statistic and L1 distance between the time-delayed reconstructions of the phase-space-distribution functions. 

The CSM and TNM provided weak indication of failure onset, and no failure forewarning. Specifically, 

kurtosis indicated failure onset in 4 channels (A1, A2, A4, and A5). Skewness indicated failure onset in 3 

channels (A1 – A3). Two channels indicated failure onset via time steps per cycle (A1 – A2) and first zero in 

the autocorrelation (A2 – A3). First minimum in the mutual information indicated failure onset in one channel 

(A2). In sharp contrast to these weak indications, ORNL’s novel phase-space dissimilarity measures provided 

forewarning of the failure, as well as indication of the failure onset in  four channels (A1, A2, A3, and A5). 

  

Recent work by our team showed very similar results for other machines and types of data
16

. Namely, the 

PSDM provide a more consistent correlation with fault progression, than the CSM and TNM
22

. Table 3 

summarizes recent results for forewarning of seeded faults and accelerated failures in a variety of equipment, 

along with multiple repetitions of the experiments for reproducibility.  

 

Table 3. Summary of recent machine failure forewarning results 

Provider Equipment Failure Time-serial data Reference 

EPRI 800-HP electric motor air-gap offset electrical & vibration power 16, 23 

EPRI 800-HP electric motor broken rotor electrical & vibration power 16, 23 

EPRI 500-HP electric motor turn-to-turn short electrical & vibration power 16, 23 

Otero ¼-HP electric motor imbalance Acceleration 23 

PSU/ARL 30-HP motor gear tooth electrical & vibration power, torque 16, 23 

PSU/ARL motor cracked blade electrical & vibration power 16 

PSU/ARL 30-HP motor bearing vibration power 16 

ORNL Dogbone samples structural failure stress & strain 18-20, 25 

ORNL Machine tool chatter Acceleration 26 

 

PSDM consistently show better discrimination power for machine prognostication than either CSM or TNM. 

The reason for the improved performance of PSDM is that CSM and TNM compare averages, while PSDM are 

the sum over the absolute difference between the two phase-space states. In addition, the enhanced 

discrimination power facilitates use of PSDM on noisier data. The sensitivity and robustness of PSDM depend 

both on the data quality and on the phase-space reconstruction parameters. Indeed, (i) data quality can be 

improved by removal of confounding artifacts from the signal, and (ii) reconstruction parameters can be chosen 

much closer to their optimal values. In practice, the analysis requires a search over the parameter space to 

obtain the best indication of condition change. 

 

R&D Magazine gave an R&D100 award to ORNL in 2005 for a hand-held prognostic device (SeizAlert
10

), 

which wirelessly acquires scalp brain waves, indicates forewarning of epileptic seizures, and provides the 

results wirelessly. Since ORNL has demonstrated that the same methodology works for both equipment and 

biomedical applications, this hand-held platform can be readily adapted for Army prognostics. We recommend 

the following implementation path for a failure- prognostication prototype: 1) acquisition of tri-axial 

accelerometer data from a single location on the helicopter gearbox for conversion to vibration power; 2) ten 

repetitions of the gear failure experiment for statistically defensible results; 3) implementation of the 

acquisition, analysis, and forewarning on a ruggedized, hand-held platform; and 4) prototype testing and 

validation in the field. 
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Figure 1. US Army’s OH-58C helicopter. 
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          Figure 2. Pictures of the OH-58C gearbox
53-54

 (top), and a line drawing of the accelerometer 

locations on the gearbox housing as viewed from the top (bottom left diagram) and side (bottom right 

diagram). Numbered boxes indicate the five accelerometer locations (A1 – A5), from which data were acquired 

during the failure testing. A1 (second channel in the original data files) was at the input side of gearbox housing 

to detect acceleration in the vertical (Z) direction. A2 (third channel in the original data files) was co-located 

with A1 to detect acceleration in the transverse (X) direction. A3 (fourth channel in the original data files) and 

A4 (fifth channel in the original data files) were mounted on the gearbox circumference at 45
o
 and 225

o
 from the 

input pinion gear to detect axial-traverse (X-Y) motion. A5 (sixth channel in the original data files) was on the 

top cover stud bracket to detect acceleration near the 225
o
 axial-traverse direction. The accelerometers are linear 

to 20 kHz and have a resonance frequency of 90 kHz. 
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Figure 3. (top) Spiral-bevel pinion gear from OH-58C helicopter before removal of the broken tooth 

with the insert showing the seeded fault, namely an electro-discharge machined notch (3 mm wide by 0.25 mm 

tall by 2 mm deep); (bottom) same gear after removal of the broken tooth (insert). 
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Figure 4. Typical data from the OH-58C helicopter gearbox experiment, showing the five different accelerometer channels (A1 – A5) in 

each row, and over three time scales that decrease from left to right to display the underlying complex, nonlinear dynamical structure. The right-

most column shows the log10 of the Fourier amplitude of each signal, displaying a broad tail with no dominant frequencies. 
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 Figure 5. Typical measures of data from the OH-58C helicopter gearbox experiment for the first 

accelerometer channel (A1). The top subplot shows simple linear measures of the data, namely minimum 

(Gn) in black, absolute average deviation (-2a) in blue, standard deviation (2) in green, and maximum (Gx) in 

red. The second from the top shows skewness. The third plot from the top shows kurtosis. The second plot 

from the bottom shows the number of time steps per cycle (TCYC). The bottom plot shows the number of time 

steps to reach the first zero in the auto-correlation function (Z1). See the text for further discussion. 
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 Figure 6. Typical measures of data from the OH-58C helicopter gearbox experiment for the 

second accelerometer channel (A2). The top subplot shows simple linear measures of the data, namely 

minimum (Gn) in black, absolute average deviation (-2a) in blue, standard deviation (2) in green, and 

maximum (Gx) in red. The second from the top shows skewness. The third plot from the top shows kurtosis. 

The second plot from the bottom shows the number of time steps per cycle (TCYC). The bottom plot shows the 

number of time steps to reach the first zero in the auto-correlation function (Z1). See the text for further 

discussion. 
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 Figure 7. Typical measures of data from the OH-58C helicopter gearbox experiment for the 

third accelerometer channel (A3). The top subplot shows simple linear measures of the data, namely 

minimum (Gn) in black, absolute average deviation (-2a) in blue, standard deviation (2) in green, and 

maximum (Gx) in red. The second from the top shows skewness. The third plot from the top shows kurtosis. 

The second plot from the bottom shows the number of time steps per cycle (TCYC). The bottom plot shows the 

number of time steps to reach the first zero in the auto-correlation function (Z1). See the text for further 

discussion. 
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 Figure 8. Typical measures of data from the OH-58C helicopter gearbox experiment for the 

fourth accelerometer channel (A4). The top subplot shows simple linear measures of the data, namely 

minimum (Gn) in black, absolute average deviation (-2a) in blue, standard deviation (2) in green, and 

maximum (Gx) in red. The second from the top shows skewness. The third plot from the top shows kurtosis. 

The second plot from the bottom shows the number of time steps per cycle (TCYC). The bottom plot shows the 

number of time steps to reach the first zero in the auto-correlation function (Z1). See the text for further 

discussion. 
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 Figure 9. Typical measures of data from the OH-58C helicopter gearbox experiment for the first 

accelerometer channel (A5). The top subplot shows simple linear measures of the data, namely minimum 

(Gn) in black, absolute average deviation (-2a) in blue, standard deviation (2) in green, and maximum (Gx) in 

red. The second from the top shows skewness. The third plot from the top shows kurtosis. The second plot 

from the bottom shows the number of time steps per cycle (TCYC). The bottom plot shows the number of time 

steps to reach the first zero in the auto-correlation function (Z1). See the text for further discussion. 
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 Figure 10. Traditional nonlinear measures of the first accelerometer channel (A1) from the OH-

58C helicopter gearbox experiment. The top subplot shows the number of time steps to reach the first 

minimum in the mutual information function (M1). The middle plot displays the correlation dimension (D), as a 

measure of complexity in the data. The bottom plot shows the Kolmogorov entropy (K), which measures the 

loss in predictability (bits per second). See the text for further discussion. 
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 Figure 11. Traditional nonlinear measures of the second accelerometer channel (A2) from the 

OH-58C helicopter gearbox experiment. The top subplot shows the number of time steps to reach the first 

minimum in the mutual information function (M1). The middle plot displays the correlation dimension (D), as a 

measure of complexity in the data. The bottom plot shows the Kolmogorov entropy (K), which measures the 

loss in predictability (bits per second). See the text for further discussion. 
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 Figure 12. Traditional nonlinear measures of the third channel (A3) from the OH-58C 

helicopter gearbox experiment. The top subplot shows the number of time steps to reach the first minimum 

in the mutual information function (M1). The middle plot displays the correlation dimension (D), as a measure 

of complexity in the data. The bottom plot shows the Kolmogorov entropy (K), which measures the loss in 

predictability (bits per second). See the text for further discussion. 

 

 

 

 

 



 

 36 

 

         

8

10

12

14

16

M
1

A4  17-Nov-2008

         

4.2

4.4

4.6

4.8

5

D

0 0.5 1 1.5 2 2.5 3 3.5 4

0.04

0.06

0.08

0.1

0.12

K

TIME (HOURS)  
 

 Figure 13. Traditional nonlinear measures of the fourth accelerometer channel (A4) from the 

OH-58C helicopter gearbox experiment. The top subplot shows the number of time steps to reach the first 

minimum in the mutual information function (M1). The middle plot displays the correlation dimension (D), as a 

measure of complexity in the data. The bottom plot shows the Kolmogorov entropy (K), which measures the 

loss in predictability (bits per second). See the text for further discussion. 
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Figure 14. Traditional nonlinear measures of the fifth accelerometer channel (A5) from the OH-

58C helicopter gearbox experiment. The top subplot shows the number of time steps to reach the first 

minimum in the mutual information function (M1). The middle plot displays the correlation dimension (D), as a 

measure of complexity in the data. The bottom plot shows the Kolmogorov entropy (K), which measures the 

loss in predictability (bits per second). See the text for further discussion. 
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Figure 15. Phase-space dissimilarity measures versus time for accelerometer channel, A1 with S=2, 

d=3, =18: (a) normalized 
2
 measure for the non-connected phase-space, U(N

2
); (b) normalized 

2
 measure 

for the connected phase-space, U(C
2
); (c) normalized L1 measure for the non-connected phase-space, U(LN); 

(d) normalized L1 measure for the connected phase-space, U(LC); (e) composite measure, C. 
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Figure 16. Best forewarning of gear failure via the composite phase-space dissimilarity measure for 

accelerometer channel, A1, at S=2, d=3, =30 showing: (top) the cumulative sum over time; (middle) the 

standard deviation (SD) from a linear fit versus time, with a star (*) at the corresponding minimum; and 

(bottom) the composite PSDM versus time with a threshold for forewarning (green) and another threshold for 

failure onset (red). 
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Figure 17. Best forewarning of gear failure via the composite phase-space dissimilarity measure for 

accelerometer channel, A2, at S=2, d=3, =10 showing: (top) the cumulative sum over time; (middle) the 

standard deviation (SD) from a linear fit versus time, with a star (*) at the corresponding minimum; and 

(bottom) the composite PSDM versus time with a threshold for forewarning (green) and another threshold for 

failure onset (red). 
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Figure 18. Best forewarning of gear failure via the composite phase-space dissimilarity measure for 

accelerometer channel, A3, at S=11, d=3, =12 showing: (top) the cumulative sum over time; (middle) the 

standard deviation (SD) from a linear fit versus time, with a star (*) at the corresponding minimum; and 

(bottom) the composite PSDM versus time with a threshold for forewarning (green) and another threshold for 

failure onset (red). 
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Figure 19. Best forewarning of gear failure via the composite phase-space dissimilarity measure for 

accelerometer channel, A5, at S=12, d=3, =20 showing: (top) the cumulative sum over time; (middle) the 

standard deviation (SD) from a linear fit versus time, with a star (*) at the corresponding minimum; and 

(bottom) the composite PSDM versus time with a threshold for forewarning (green) and another threshold for 

failure onset (red). 
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