
Trace: Tennessee Research and Creative Exchange

Masters Theses

University of Tennessee 

Dynamic Application Level Security

Sensors

Christopher Thomas Rathgeb
University of Tennessee - Knoxville, crathgeb@utk.edu

Rathgeb, Christopher Thomas, “Dynamic Application Level Security Sensors. ” Mas-
ter’s Thesis, University of Tennessee, 2010.
http://trace.tennessee.edu/utk gradthes/656

To the Graduate Council:

I am submitting herewith a thesis written by Christopher Thomas Rathgeb entitled “Dynamic Ap-

plication Level Security Sensors.” I have examined the final electronic copy of this thesis for form

and content and recommend that it be accepted in partial fulfillment of the requirements for the

degree Master of Science, with a major in Computer Engineering.

Gregory D. Peterson

Major Professor

We have read this thesis

and recommend its acceptance:

Brad Vander Zanden

David Icove

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original Signatures are on file with official student records.)

Dynamic Application Level Security Sensors

A Thesis

Presented for the

Master of Science Degree

The University of Tennessee, Knoxville

Christopher Thomas Rathgeb

May 2010

Copyright c© 2010 by Christopher Thomas Rathgeb

All rights reserved.

ii

DEDICATION

This thesis is dedicated to my wife Caroline for all of her love, support, and encouragement; and

to my son, Lennox for giving me another yet another reason to further my education.

iii

ACKNOWLEDGMENTS

I would like to thank all of the people who helped and pushed me to complete my Masters of

Science degree. First and foremost, I would like to thank my parents for their unconditional love

and support. Ever since I was a child, they always told me I could do anything I put my mind to.

Secondly, I would like to thank Dr. Craig Shue for critically reviewing draft copies of this work.

Thirdly, I would like to thank Mr. Stephen Raub for helping me learn many of these concepts over

the past several years. Fourthly, I would not have been successful had it not been for my advisor,

Dr. Peterson. Finally, would also like to thank Dr. Vander Zanden and Dr. Icove for taking the

time to serve on my committee.

iv

ABSTRACT

The battle for cyber supremacy is a cat and mouse game: evolving threats from internal and external

sources make it difficult to protect critical systems. With the diverse and high risk nature of these

threats, there is a need for robust techniques that can quickly adapt and address this evolution.

Existing tools such as Splunk, Snort, and Bro help IT administrators defend their networks by

actively parsing through network traffic or system log data. These tools have been thoroughly

developed and have proven to be a formidable defense against many cyberattacks. However, they

are vulnerable to zero-day attacks, slow attacks, and attacks that originate from within. Should an

attacker or some form of malware make it through these barriers and onto a system, the next layer

of defense lies on the host. Host level defenses include system integrity verifiers, virus scanners,

and event log parsers. Many of these tools work by seeking specific attack signatures or looking

for anomalous events. The defenses at the network and host level are similar in nature. First,

sensors collect data from the security domain. Second, the data is processed, and third, a response

is crafted based on the processing. The application level security domain lacks this three step

process. Application level defenses focus on secure coding practices and vulnerability patching,

which is ineffective. The work presented in this thesis uses a technique that is commonly employed

by malware, dynamic-link library (DLL) injection, to develop dynamic application level security

sensors that can extract fine-grain data at runtime. This data can then be processed to provide

stronger application level defense by shrinking the vulnerability window. Chapters 5 and 6 give

proof of concept sensors and describe the process of developing the sensors in detail.

v

PREFACE

This document was written to help readers understand that gaps exist in current defensive tech-

niques. It provides a possible solution to shrink the vulnerability window by filling one such gap.

Several of the topics discussed throughout this thesis, such as code injection, reverse engineering,

and shellcode examples, are taboo or carry negative connotations. Dynamic-link library injection

is often used by attackers to execute code stealthily. Reverse engineering is often used to find

attackable vulnerabilities or steal intellectual property. It is possible to take these techniques plus

the additions presented in this thesis to create harmful software. For example, an attacker could

use dynamic application level security sensors to harvest information, such as passwords, credit

card numbers, and other important data. The intentions of this work are not to create a cookbook

for developing harmful software but rather to introduce new methods to defend against malicious

software. In light of these potential dangers, complete source code for the examples has not been

provided.

vi

Contents

1 Introduction 1

1.1 Significance . 1

1.2 Approach . 4

1.3 Assumptions . 4

2 Existing Defensive Techniques 7

2.1 Network Level Security Domain . 8

2.1.1 Network Intrusion Detection Systems . 8

2.1.2 Network Level Security Domain Summary . 10

2.2 Host Level Security Domain . 11

2.2.1 System Integrity Verifiers . 12

2.2.2 Antivirus Software . 15

2.2.3 Host Level Security Domain Summary . 18

2.3 Application Level Security Domain . 18

2.3.1 Secure Coding Practices . 19

2.3.2 Self-Defending Software . 23

2.3.3 Static Application Level Sensors . 23

2.3.4 Dynamic Application Level Sensors . 24

2.3.5 Application Level Security Domain Summary 25

2.4 Conclusions . 25

vii

3 Dynamic-Link Library Code Injection 27

3.1 Types of Code Injection . 27

3.1.1 SQL Injection . 27

3.1.2 Cross-Site Scripting Injection . 28

3.1.3 DLL Injection . 30

3.1.4 Summary of Types of Code Injection . 34

3.2 DLL Injection Techniques . 34

3.2.1 Windows APIs . 34

3.2.2 Windows Hooks . 35

3.2.3 Summary of DLL Injection Techniques . 35

3.3 Detecting DLL Injection . 36

3.4 Existing Applications of DLL Injection . 36

3.4.1 Malware . 37

3.4.2 Functionality Additions . 39

3.4.3 Summary of Existing Applications of DLL Injection 42

3.5 Dynamic Application Level Sensors Through DLL Injection 42

3.5.1 External Threats . 42

3.5.2 Internal Threats . 43

3.5.3 Summary of Dynamic Application Level Sensors Through DLL Injection . . . 43

3.6 Conclusions . 43

4 Developing Dynamic Sensors 45

4.1 Determine the Extractable Data . 45

4.1.1 The Security Threat . 46

4.1.2 The Application . 47

4.1.3 Summary of Determining the Extractable Data 48

4.2 Reverse Engineer the Application . 49

4.2.1 The Reverse Engineering Process . 50

4.2.2 Reverse Engineering Tools . 50

viii

4.2.3 Reverse Engineering Methods . 51

4.2.4 Summary of Reverse Engineering the Application 53

4.3 Automate the Data Extraction . 55

4.3.1 Coding the Sensor . 55

4.3.2 Signature Matching for Easy Update . 57

4.3.3 Summary of Automating the Data Extraction 57

4.4 Analysis and Response . 58

4.5 Conclusions . 59

5 Experimental Sensor: PuttySensor.dll 61

5.1 Target Application . 61

5.2 Reverse Engineering Putty.exe . 63

5.3 Implementation . 64

5.4 Results . 65

5.5 Conclusions . 68

6 Experimental Sensor: FunctionTimer.dll 69

6.1 Target Application . 69

6.2 Reverse Engineering GuessNumber.exe . 71

6.3 Implementation . 72

6.4 Attack Vectors . 73

6.4.1 Code Tamper Attack . 74

6.4.2 Buffer Overflow Attack . 74

6.5 Results . 78

6.5.1 Results of Code Tamper Attack . 79

6.5.2 Results of Buffer Overflow Attack . 81

6.6 Conclusions . 83

7 Summary and Conclusion 85

7.1 Summary . 85

ix

7.2 Future Work . 88

7.3 Ethical Implications of this Work . 89

7.4 Conclusion . 91

Bibliography 92

Appendix 98

A Screenshots of Reverse Engineering Tools 99

Vita 105

x

List of Tables

6.1 Observed Execution Times for 32 Runs with a Code Tamper Attack at Run 27 . . . 80

6.2 Observed Execution Times for 32 Runs with a Buffer Overflow attack at Run 32 . . 82

xi

List of Figures

1.1 Unique malware from 2006 to first half of 2009 seen by Avert Labs [28] 2

1.2 Underground malware black market posting of attacks on a website [12] 3

2.1 Three step process taken by defense systems . 8

2.2 Architecture of OSSEC showing the three step process [33] 15

2.3 Example of compiler warning that could lead to unexpected behavior 20

3.1 Type of errors used in a full-view SQL injection attack 28

3.2 Cross-site scripting injection example . 31

3.3 Thread level concurrency on single and multi-core processors 32

3.4 Result of helloworld.dll being injected into iexplore.exe 33

3.5 Effect of a thread bomb in action . 39

3.6 Extended functionality of Task Manager [40] . 40

3.7 MMORelay’s chat functionality addition through DLL injection 41

4.1 Reverse engineering feedback loop . 50

4.2 Pictorial example of detours . 52

4.3 Logic path alteration example . 53

4.4 Iterative memory scanning with Cheat Engine . 54

5.1 The Putty.exe configuration window . 62

5.2 Screenshot of the user32.dll base address and GetDlgItem() function address 64

5.3 Popup box displaying the item id of the user interface element selected 66

xii

5.4 Screenshot of the PuttySensor.txt log file produced by this sensor 67

6.1 GuessNumber.exe prompting the user for their name 70

6.2 Results of a complete cycle of GuessNumber.exe . 70

6.3 Assembly code of Foo() prior to the code tamper attack 75

6.4 Assembly code of Foo() after the code tamper attack 76

6.5 Stack before buffer overflow . 77

6.6 Stack after buffer overflow . 77

6.7 Shellcode executing on the stack . 78

6.8 Scatter plot of the timing results of the tamper attack 79

6.9 The watchdog timer detects that Foo() never returns and alerts the user. 81

6.10 Scatter plot of the timing results of the buffer overflow attack 83

A.1 Screenshot of the disassembler, IDA Pro . 100

A.2 Screenshot of the memory editor, Winhack 2.0 . 101

A.3 Screenshot of memory editor and disassembler, Cheat Engine 5.5 102

A.4 Screenshot of the jump calculator, JumpCalc . 103

A.5 Screenshot of the compiler, Visual Studio 2008 . 104

xiii

Chapter 1

Introduction

1.1 Significance

Cyberspace is an amorphous global interconnected network of networks that seems to be growing

without bounds. Over the last decade, the breadth and complexity of cyberspace has vastly ex-

panded to encompass more than just physically connected computers. The cyberspace domain now

extends its reach to mobile devices, social networks, and other physical and virtual elements.

Accompanying this growth is an increase in cybercrime. Cybersecurity policies attempt to defend

against attacks, disruptions, and other threats to information infrastructures. Such infrastructures

include computers, computer networks, software systems, and the information they contain and

communicate [9]. Recent federal policy documents emphasize the importance of cybersecurity to

the welfare of modern society. They classify cyberattacks as “a new kind of threat to the safety and

well-being of the United States,” and describe America’s failure to protect cyberspace as “one of

the most urgent national security problems [26].” Further, these documents outline cybersecurity

priorities and discuss the factors that contribute to the difficulty of securing cyberspace [4] [18] [20].

These factors include the increase in quantity and sophistication of cyberattacks and the complexity

of the cyberdomain.

1

Figure 1.1: Unique malware from 2006 to first half of 2009 seen by Avert Labs [28]

Cyberattacks are growing exponentially in numbers. In 2008 malicious software increased an

estimated 350% from levels in 2007 [12]. According to Kaspersky Lab analysts, there were 2,227,415

new malicious programs on the Internet in 2007, a four-fold increase on the results from 2006, with

a volume of 354 GB [21]. In the first half of 2009, Avert labs saw almost as much new malware

as in all of 2008 [28]. Figure 1.1 shows this growth. Panda labs predicted that malware in 2009

would grow and become more sophisticated and difficult to detect [34]. They claimed cyberspace

would see an increase in web-based attacks, attacks through social networks, and attacks on non-

Windows platforms such as Mac OS X Leopard, Linux, and iPhone. Each of these claims came

true. In January 2009 Twitter suffered attacks that resulted in the compromise of thirty-three high

profile accounts including an account belonging to President Barack Obama [39]. In 2009, unlocked

iPhones, that is devices that have been unlocked from the manufacture’s proprietary restrictions,

met their first worm, which changed the user’s operating system wallpaper to an image of 1980’s

pop star Rick Astley with a message that said, “ikee is ever gonna give you up [13].”

2

Figure 1.2: Underground malware black market posting of attacks on a website [12]

Second, the increasing sophistication of cyberattacks makes them harder to defend against. For

example, malware can detect and neutralize antivirus software before the antivirus software detects

the infiltration [30]. Other malware, such as the Storm worm, use polymorphic code that regularly

transforms itself to thwart traditional antivirus and intrusion detection [43]. Further, malware

authors are adopting software engineering’s best practices that allow for faster deployment and

higher quality code.

This increase in sophistication is driven by both political and economic agendas. Nation-states,

militaries, and foreign intelligence services have the resources to commit acts of cyberwar through

the anonymity of the internet. Quality malware can be purchased in underground software black

markets. Botnet access can be purchased for as little as $225, keystroke loggers for $23, and

phishing kits for $10 [1]. If a hacker desires to take down a website, it would only cost $50 per day

it is down [12]. Figure 1.2 above shows a forum post of a hacker offering a distributed denial of

service attack.

3

Finally, many levels of complexity makes securing the cyberdomain difficult. The information

technology infrastructure is a complicated global system of hardware, software, operating systems,

data, networks, and people. In Sally Floyd’s paper, Difficulties in Simulating the Internet, she

attributes the challenges faced on internet modeling and simulation to the heterogeneity and dy-

namic nature of the networks. She details the internet as changing rapidly and unpredictably [11].

Further, a 2005 Congressional Research Service report for Congress stated that, “the complexity

of cyberspace and its components, even within organizations, makes it both difficult to test and to

predict how systems will behave under unusual circumstances, such as those that might rise from

an unanticipated cyber attack [9].”

1.2 Approach

Many techniques exist for defending against cyberattacks. These techniques include firewalls,

least user privileges, network intrusion detection systems, system integrity verifiers, secure coding

practices, and vulnerability patching. Combining these elements forms a defense-in-depth security

policy. At the network and host level, software-based intrusion detection systems collect data from

customized sensors. The collected data is then processed and a response is crafted if any threats

are detected. The application level focuses on secure coding practices and vulnerability patching.

It lacks the sensors, analysis, and response of the network and host levels.

The granularity of the data collected depends on the security domain protected by the defensive

mechanism. The work presented in this thesis expands the application level security domain to

include sensors that are dynamically added to the application at runtime. This addition is accom-

plished through dynamic-link library injection and reverse engineering. The results are sensors that

can extract fine-grain data at the application level.

1.3 Assumptions

There are many factors that contribute to the complexity of developing dynamic application level

security sensors. These factors include but are not limited to the operating system, processor, and

4

target application. In order to simplify this complexity, the work presented in this thesis makes

several assumptions.

The first assumption is that the operating system of the host machine is some version of Microsoft

Windows. As of January 3, 2010, Microsoft Windows has a market share of 92.2%, making it the

most common operating system in existence [23]. While the general methods described in this thesis

are possible on operating systems other than Windows, the implementations of specific elements

may vary. For example, the techniques for process injection differ between Linux and Windows.

Additionally, there are differences among Windows versions that contribute to the complexity. For

example, the virtual memory location for the start of the stack in Windows XP is static where as it

is dynamic in Windows 7. While it is worth noting these differences, they are not extreme enough

to warrant an assumption about the version of the operating system. The example presented in

Chapters 5 was developed for Windows 7, and the example presented in Chapter 6 was developed

for Windows XP.

The second assumption is that the processor of the host machine is either an x86-based Intel or

AMD microprocessor. This assumption simplifies reverse engineering because it fixes the instruction

set architecture (ISA). There are no assumptions about the number of cores on the system, however,

the processor must support threading.

The third assumption is that the target application was developed in C, C++, or x86 assembly.

Many newer programming languages, such as Java, Visual Basic .Net, and C#, have virtual run

time environments or just-in-time compilers. This results in applications that are innately less

vulnerable than traditional C or C++ applications.

The fourth assumption is that the injected binary code is in the form of a dynamic-link library.

This simplifies the runtime process injection. It is possible to inject code that is in the form of an

executable, string, or precompiled shell code, but these techniques are not addressed in this work.

5

Finally, the last assumption is that some form of code execution is already running on the system.

In the case of stealthy execution, this may be in the form of an exploited vulnerability, and in the

case of friendly execution, the code can be manually initiated.

These assumptions will help simplify the complexity of the addition of dynamic application level

security sensors. They also focus the efforts of the work presented in this thesis. Keep in mind

that many of these assumptions can be relaxed and that the methods can be implemented on

other operating systems, processors, and forms of code. The next chapter will discuss the internal

workings of several existing defensive techniques and the level at which they operate.

6

Chapter 2

Existing Defensive Techniques

There are many existing defensive tools, both commercial and open source, such as network in-

trusion detection systems, virus scanners, and anti-phishing filters. Each of these attempts to

protect their particular security domains. Unfortunately attackers continue to capitalize on the

copious weaknesses that are innate to these methods. By the time an attack is discovered, if one

is discovered at all, the damage has already been done. The focus of this research is to shrink the

vulnerability window by adding techniques that strengthen the application level security domain.

The chapter discusses the spectrum of existing defensive techniques and highlights the need for

application level security methods.

In general there is a three step process that is common in the existing defensive techniques. The

first step is to collect data through custom sensors. The sensor then passes the collected data to

the data processing unit for analysis. Based on the results of the analysis the defensive system

may choose to respond to an event. This three step process, which is shown in Figure 2.1, is

a reoccurring theme throughout this thesis, and can be seen in each of the defensive techniques

detailed in this chapter. In order to better understand the new cybersensors presented in this

research, it is important to understand the inner workings of existing defensive techniques and

their security domains.

7

Figure 2.1: Three step process taken by defense systems

2.1 Network Level Security Domain

In the classic defense-in-depth strategy, network level protection systems are the “external layer

focus area [29].” They are the first technological line of defense against outside attackers. The

network level security domain has both hardware and software defenses that attempt to provide

information assurance through a combination of firewalls, proxies, authentication techniques, role-

based access controls, and network analyzers. In order to properly compare application level sensors

to sensors in other security domains, this section will focus on sensor-based software defenses,

particularly network intrusion detection systems.

2.1.1 Network Intrusion Detection Systems

Network intrusion detection systems (NIDS) work by monitoring network traffic. They look for

suspect behavior such as denial of service attacks, worm propagations, or attempts to install a

backdoor root kit. For example a large number of TCP connection requests to many different ports

for a particular machine would indicate a TCP port scan, which is often used by worms attempting

to propagate [14]. These intrusion detection systems work by parsing through network packet logs.

Their full functionality can be generalized into the previously discussed three step process.

First, a sensor collects data from the network lines. The data is then displayed to the screen for

human parsing, logged to disk for analysis later, or passed directly to the NIDS data analysis step.

If an attack is successful, log files can be forensically studied in order to build a signature through

8

the attack sequence.

Next, the NIDS processes the collected data through protocol and content analysis. There are

two major ways to perform this kind of analysis. Signature matching attempts to identify known

attack sequences by comparing incoming network traffic to a database of previously detected attack

sequences. It is not unusual for commercial NIDS to have large signature databases. The drawback

to this technique is that it is limited to detecting attacks in the system’s repository. Since the

quantity of attacks is increasing, these systems quickly become outdated. It is crucial to keep the

signatures, also referred to as rules, up to date.

Anomaly-based systems attempt to compare the incoming traffic to a profiled normal baseline

for the network. This makes them prime candidates for detecting zero-day attacks. The problem

with anomaly-based systems is that if they are trained using data tainted with attacks, they include

those attacks in the baseline as normal behavior. This problem can be overcome through training

in an isolated clean environment, and using signatures to check the training data.

Finally, the system responds to any detected anomalous behavior. In many cases a response may

be as simple as notifying system administrators that something suspicious has been detected. This

can be problematic if the NIDS floods the operators with false detections [31]. False positives is

a problem all detection systems face, however at the network level the problem is heightened by

the volume of data analyzed. It is not uncommon for the system to filter out the IP address of the

attacker or terminate the TCP session.

Network intrusion detection systems are powerful tools. However, they are vulnerable to slow

attacks and attacks that originate from within. Next, two examples of network intrusion detection

systems are described.

Example: Snort - A Network Intrusion Detection System

Snort is an example of one of the most commonly used NIDS. It is an open source system that has

over 270,000 registered users and millions of downloads worldwide [46]. It provides a lightweight

9

framework that uses both signature and anomaly-based inspection methods to perform traffic anal-

ysis and packet logging on IP networks. Snort can be configured to run in one of four separate

modes. First, it can run in sniffer mode where the sensor simply reads the packets from the net-

work and continuously displays them on the screen. Second, it can run in packet logger mode. In

this mode it records all of the network traffic to the hard drive, which is particularly useful for

forensically determining the cause of a successful attack. Third, it runs in NIDS mode where the

sensor completes the three step process described at the beginning of this chapter. Finally, Snort

can run in inline mode where it obtains packets from iptables instead of libpcap [47].

Example: Bro - A Network Intrusion Detection System

Bro is another example of a commonly used network intrusion detection system. Designed for UNIX,

its functionality is similar to Snort. Bro introduces some powerful features that are not found in

Snort, such as a custom scripting language known as “Bro language.” This scripting language allows

users the ability to write or modify policies that govern the sort of activities deemed unacceptable

on the network. It also includes a tool called “snort2bro” that converts Snort signatures into

Bro signatures and reduces the number of false positives [3]. Even with these network intrusion

detection systems, attacks are still successful.

2.1.2 Network Level Security Domain Summary

Network administrators attempt to defend the network level security domain from malicious out-

siders through a combination of policy and hardware and software solutions. This section in par-

ticular focused on network level intrusion detection systems such as Snort and Bro. These systems

are sensor-based software solutions that monitor network traffic in order to pull out anomalous

behavior and defend against known cyberattacks. Unfortunately zero-day attacks, slow attacks,

and attacks that originate from within are successful at defeating even the best NIDS. Should an

attack successfully make it through the network level the subsequent layer of defense lies within

the host. The next section will discuss defenses that operate within the host level security domain.

10

2.2 Host Level Security Domain

In the defense-in-depth paradigm, host level security domain protection falls into the “defending

the computing environment” focus area [29]. This is perhaps one of the hardest domains to protect

because it encompasses all physical, virtual, and social components tied to a host system. This is

such a broad domain that the effects of a successful attack range in cost from inconsequential to

catastrophic.

The physical elements tied to this domain include the hardware of the host system itself and

physical devices controlled by the host. For example, the Easytune 5 software allows users to fine

tune the speed of their CPU fan in order to allow for performance over-clocking. The existence of

this software shows that malware could be written to disable the CPU fan of a computer system

which could result in physical hardware failure due to overheating. In the case of a host that controls

external physical devices the effects could be far more devastating. For example, supervisory control

and data acquisition (SCADA) systems are host machines that control critical infrastructure such

as power generators and water treatment facilities [41]. The compromise of a SCADA system could

have damaging cascading effects.

Virtual elements tied to the host level security domain include critical data, which may contain

intellectual property, and software running on the machine. Blackhat hackers, viruses, worms,

trojans, and malicious insiders threaten all of these elements. An attacker could commit costly

identity theft by compromising critical data such as credit card or social security numbers. Dis-

gruntled employees and other malicious insiders threaten the intellectual property of businesses

which can cost millions of dollars. According to an insider threat study conducted by the National

Threat Assessment Center and CERT Coordination Center, losses from insider threats for several

companies studied were in the tens of millions of dollars each [22]. Malware in the form of viruses,

worms, and trojans attack software in order to destroy systems and facilitate information theft.

The social elements tied to the host level security domain include user computer education, usage

tendencies, and reputations. Uneducated users who download and execute unknown attachments

11

sent to them via email create many new attack vectors for outsiders. Educating these users to

safely operate their hosts is as important as running software to detect and remove viruses. In the

earlier example of insider threat versus a business, social elements such as damage to the company’s

reputation are also a risk.

The growing influx of social networking websites has changed the usage tendencies of the average

user. People are instantly connected to their friends and family through technology. Attackers use

this to their advantage to help spread chaos in the form of spam email and malware. Should a

hacker compromise someone’s account on one of these sites, they can propagate malware to everyone

connected to that victim’s social network.

The increased number of attacks combined with the volume of potential attack vectors is over-

whelming. Host level security measures attempt to protect all of these different elements through

education, system integrity verifiers, and antivirus software. Again, in order to properly compare

application level sensors to sensors in other security domains, the following section will focus on the

sensor-based software solutions used to protect this domain, such as host-based intrusion detection

and antivirus software.

2.2.1 System Integrity Verifiers

System integrity verifiers are more commonly referred to as host-based intrusion detection systems

(HIDS). In this section both terms will be used interchangeably. The term “system integrity

verifier” better describes the functionality of this defensive mechanism, while the term “host-based

intrusion detection system” better describes the security domain. These systems monitor changes

to system and log files, the registry, and processes running on the host [14]. They are designed to

work alongside of network intrusion detection systems. While a NIDS protects the communication

channels between different hosts on a network, a HIDS protects the host itself.

System integrity verifiers follow the same three step process described at the beginning of this

chapter. First, data is collected from customized sensors. System integrity verifiers particularly rely

12

on data from several different sensors at the same time. For example, one sensor may monitor which

processes are activated, and the length and activity levels of each process. Meanwhile a second

sensor may monitor access logs to files located in the “C:\\Windows\System32” directory. The

fact that these systems collect data from many different sensors is beneficial in that it fully allows

a system integrity verifier the ability to probe the system with seemingly limitless possibilities.

However, it also sheds light onto the complexity of a working host. The combination of multiple

versions of different software and ranging computer skills and security awareness opens up a large

number of potential vulnerabilities. The exorbitant size of the possible attack space is overwhelming,

and determining where to place sensors is challenging.

Next, the collected data is processed. The type of processing depends largely on the collected

data. For example, changes that are made to a system file could use two types of processing. One

type of processing may be checksum verification, while a second type may be to check this access

against anomaly based detection rules. Another example is a sensor that monitors port activity.

Such a sensor could be implemented at either the network or host level. The processing stage for

this may determine when specific ports are properly or improperly accessed [19].

Finally, the third step is to respond to any suspect behavior on the system. Possible responses

are notifying administrators, killing a process, blocking port access, or other actions that protect

against the threat.

Example: A HIDS vs. The Blaster Worm

The Blaster worm is a computer worm that exploits a buffer overflow in the DCOM RPC service on

Windows XP and Windows 2000 machines. It surfaced in late 2003 and spread by spamming itself

to random IP addresses [2]. A system integrity verifier could be used to detect the Blaster worm.

In order to demonstrate this it is important to know how the Blaster worm works. According to

an analysis performed by eEye Digital Security the Blaster worm had the following behavior [10]:

1. Exploit RPC DCOM buffer overflow that binds a system level shell to port 4444 in order to

set up the command channel from the infecting agent and the vulnerable target which is used

13

to transmit msblast.exe via TFTP.

2. Create the registry value “HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows\

CurrentVersion\Run\windows auto update” with the value “msblast.exe”, which causes the

executable to be automatically run each time the machine boots.

3. Create a mutex named “BILLY” as a way of notifying new instances of Blaster that the target

has already been infected.

4. Initialize Winsock in order to check that the new host has network access.

5. Seek out new hosts by scanning IP addresses.

Knowing the functionality of the Blaster worm makes it easy to see how specific sensors could

easily detect it. A sensor that monitors unauthorized access to ports, particularly port 4444, would

detect this worm. Scanning for changes to the registry or initializations of Winsock would also

detect Blaster. Another host level method for detecting this type of attack would be the antivirus

software approach, which is to seek out a code signature that would match msblast.exe on the disk.

All these sensors could help defend against the Blaster worm.

Example: OSSEC A Host Based Intrusion Detection System

OSSEC is an example of an open source cross platform general purpose host-based intrusion de-

tection system used by internet service providers, governments, universities, and even commercial

companies. It combines log file analysis, file integrity checking, policy monitoring, and rootkit de-

tection to provide real time active response [33]. Its architecture makes use of the three step process

described throughout this chapter. A small client program, called an “agent”, is installed on the

computer to monitor and collect information. These agents are the customized sensors described

in the first stage of the three step process. Next, the information collected from agents is passed

to the “manager”, which is a program residing on the server that centrally performs the second

step, data analysis, for all of the agents connected to the OSSEC server. This is a useful feature

because it provides the ability to perform correlation analysis between agents. From this analysis

14

Figure 2.2: Architecture of OSSEC showing the three step process [33]

the system performs the third step by activating a response when something happens. This may

be in the form of blocking an attack or emailing an alert to a system administrator [33]. Figure 2.2

shows the architecture of OSSEC and how it uses the three step process. OSSEC has several other

features, not described here, that assist the general three step process, such as agentless monitoring,

configurable alerting, and virtualization support. Even with all of these features attacks are still

successful. This is the reason defense-in-depth is used. What one level of protection does not catch

the next level should.

2.2.2 Antivirus Software

Antivirus software is a host level security domain protection mechanism that attempts to combat

malicious code and software by scanning the file system for potentially harmful files. Antivirus

software also follows the three step process. The sensor data step is the collection of binary files

to be scanned. The data analysis step is the process of searching the files for code signatures that

are known to be harmful. Should the antivirus software find a match, it fulfills the third step by

taking the appropriate action that matches the threat. In most cases the action is to delete the

bad file and notify the user.

15

Antivirus software works by matching code signatures. While signature matching is highly suc-

cessful at detecting specific attacks, it fails to detect to new viruses and polymorphic code, which is

code that mutates through obfuscation. In order to be effective, antivirus software must maintain

an updated signature for each potential threat.

Example: Code Signature Matching and Polymorphic Code

The following example has been crafted to help understand how virus scanners work and why they

can easily detect previously seen code but not new or mutating code. Take the following snippet

of C++ code that loops a compound addition ten times:

Code: C++ Implementation

int a = 3;

for(int i=0;i<10;i++) {
a = a + i;

}

When a program is compiled into an executable, machine readable code is created. The assembly

code for this particular C++ sequence is shown below.

Code: x86 Assembly Representation

.text:0041138E mov [ebp+var 8], 3 // Assign 3 to a variable. In our case ‘a’

.text:00411395 mov [ebp+var 14], 0 // Assign 0 to loop variable ‘i’

.text:0041139C jmp short loc 4113A7 // Jump to first loop condition check.

.text:0041139E mov eax, [ebp+var 14] // Move value of variable ‘i’ into register eax

.text:004113A1 add eax, 1 // Add 1 to register eax

.text:004113A4 mov [ebp+var 14], eax // Move new eax value back into variable ‘i’

.text:004113A7 cmp [ebp+var 14], 0Ah // Loop condition check. Compare ‘i’ to value 10

.text:004113AB jge short loc 4113B8 // If ‘i’ is >= 10, exit loop

.text:004113AD mov eax, [ebp+var 8] // Move value of variable ‘a’ into register eax

.text:004113B0 add eax, [ebp+var 14] // Add value of variable ‘i’ to register eax

.text:004113B3 mov [ebp+var 8], eax // Move new value of eax into variable ‘a’

.text:004113B6 jmp short loc 41139E // Goto next loop iteration

This assembly code can also be translated into a hexadecimal representation of what the computer

actually interprets as seen in the highlighted code below.

Code: Hexadecimal Representation of Assembly

.text:00411380 FF FF B9 36 00 00 00 B8 CC CC CC CC F3 AB C7 45

16

.text:00411390 F8 03 00 00 00 C7 45 EC 00 00 00 00 EB 09 8B 45

.text:004113A0 EC 83 C0 01 89 45 EC 83 7D EC 0A 7D 0B 8B 45 F8

.text:004113B0 03 45 EC 89 45 F8 EB E6 33 C0 5F 5E 5B 8B E5 5D

.text:004113C0 C3 CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC

.text:004113D0 CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC

Static pieces of the code, such as instruction opcodes and integer values, and the sequence in

which they occur can be used to construct a specific code signature for this C++ code snippet.

Memory addresses, the registers, and other variable pieces of information can be represented by

don’t care values. The signature will be constructed from the hexadecimal representation where

variable elements are replaced with an ”X” to represent a don’t care value.

Code: Hexadecimal Signature Sequence

"C7 XX XX 03 00 00 00 C7 XX XX 00 00 00 00 EB XX 8B XX XX 83 XX XX 89 XX XX 83 XX XX 0A 7D

XX 8B XX XX 03 XX XX 89 XX XX EB XX"

Now that a signature has been created, this code snippet can be detected by a program that traverses

through an executable looking for a match to this particular byte sequence. This illustrates how a

virus scanner can detect malicious code segments that have previously been encountered and have

signatures. It is also easy to see how malware that has not been seen before will slide past this

method of detection.

If this code were to become mutated through polymorphism or static obfuscation the signature

would not match. For example, the following code example is an assembly representation containing

trivial nop obfuscation.

Code: x86 Assembly Representation with Trivial Obfuscation

.text:0041138E mov [ebp+var 8], 3 // Assign 3 to a variable. In our case ‘a’

.text:00411395 mov [ebp+var 14], 0 // Assign 0 to loop variable ‘i’

.text:0041139C jmp short loc 4113A7 // Jump to first loop condition check.

.text:0041139E mov eax, [ebp+var 14] // Move value of variable ‘i’ into register eax

.text:004113A1 add eax, 1 // Add 1 to register eax

.text:004113A4 mov [ebp+var 14], eax // Move new eax value back into variable ‘i’

.text:004113A7 cmp [ebp+var 14], 0Ah // Loop condition check. Compare ‘i’ to value 10

.text:004113AB jge short loc 4113B8 // If ‘i’ is >= 10, exit loop

.text:004113AD mov eax, [ebp+var 8] // Move value of variable ‘a’ into register eax

.text:004113B0 add eax, [ebp+var 14] // Add value of variable ‘i’ to register eax

.text:004113B3 add eax, 10 // add 10 to register eax

.text:004113B6 sub eax, 10 // sub 10 from register eax

17

.text:004113B9 mov [ebp+var 8], eax // Move new value of eax into variable ‘a’

.text:004113Bc jmp short loc 41139E // Goto next loop iteration

In the above code the two inserted instructions cancel each other out and the resulting function-

ality is the same as the original function. These two lines of assembly code however, change the

hexadecimal representation in a way that would not match the original signature.

This is a trivial example that shows the strengths and weaknesses of antivirus detection systems.

In the underground malware black market it is not uncommon for the same pieces of code to

be reused. This means signature-based detection methods should be able to detect the malicious

code. However, malware is becoming increasingly complex due to techniques like polymorphism

and obfuscation. Ten lines of assembly can be dynamically turned into hundreds or thousands of

lines of functionally equivalent code in order to avoid antivirus detection.

2.2.3 Host Level Security Domain Summary

The host level security domain is incredibly far reaching. The dynamic nature of a host system and

the user controlling it creates many opportunities for attacks. Attackers can quickly capitalize on

the vulnerabilities that surface. This makes defending these systems a challenge. System integrity

verifiers attempt to probe a system’s resources to determine if the host is functioning properly.

They do this through a combination of sensor data extracted at the host level and custom analysis.

Antivirus software seeks out malicious code and attempts to block it from harming the system.

Well-designed malware can avoid detection entirely or even disable the antivirus software. The

next section will discuss the application level security domain and measures it takes to detect and

defend against cyberthreats.

2.3 Application Level Security Domain

The application level security domain encompasses defenses that are related to software applications

running on a host machine. It subsumes the methods programmers take to secure the code they

develop. These methods include sensors statically coded into the software, self-defending mecha-

18

nisms, and other coding practices resulting in safe applications. This level also extends beyond

the development process into the runtime environment. The runtime environment includes the

virtual memory associated with the application’s process and the state of the application while it

is executing.

Robust application level security is rare due to the nature of the software development cycle.

Programmers are more concerned with getting applications to work than getting them to work

securely. Many times security is pushed aside during the development cycle due to the extra

monetary overhead of verifying a software system. This is one of the reason that seventy-five percent

of vulnerabilities and ultimately hacks come from the application level security domain [27]. There

exists a large gap in the number of vulnerabilities that manifest from application level security and

the number of measures to protect against these vulnerabilities. This section discusses several of

the techniques that can be used to defend the application level security domain. It also introduces

the focus of this thesis, dynamic application level sensors.

2.3.1 Secure Coding Practices

The primary reason vulnerabilities manifest is the lack of secure coding practices. There are

several contributing factors that lead to this shortcoming such as budget, complexity, lack of policy,

ignorance, or simply laziness. Each of these must be overcome in order to develop secure software.

CERT publishes a list of the top ten secure coding practices and recommends following them

during the development cycle to greatly reduce the number of vulnerabilities that arise from an

application [44].

Input validation is the first practice [44]. Validating all input from untrusted sources can

eliminate the majority of software vulnerabilities. These types of vulnerabilities are flaws that result

from “implicit assumptions made by the application developer about the application input [36].”

Buffer overflows are an example of an invalid assumption about the maximum size of an input [36].

In the case of web-based applications, failure to validate input is the reason SQL injection and

cross-site scripting (XSS) attacks are successful. The following is an example of a basic SQL

19

Figure 2.3: Example of compiler warning that could lead to unexpected behavior

injection. Assume the application that fails to check inputs is constructing an SQL query string

such as ‘‘SELECT * FROM users WHERE name = ‘" + userName + ‘‘‘;". Should the user input

their name as ‘‘‘a’ OR ’t’=’t‘" the resulting SQL query string would appear to be ‘‘SELECT *

FROM users WHERE name = ’a’ OR ’t’=’t’;" which would return more information than should

be displayed to the individual executing the attack [48]. The same technique can be used to bypass

password authentications on sites that did not validate the input.

Heeding compiler warnings is the second practice that can help reduce the number of software

vulnerabilities [44]. Many developers ignore compiler warnings. Compiling with the highest warning

levels available and fixing the results that the compiler flags can reduce the number of potential

attack vectors. A good example of this is a C or C++ compiler that allows the user to write a

value into a variable that should be a pointer. This forces the pointer to point to some arbitrary

location in memory. Syntactically this may be acceptable but most compilers will throw a warning

for this type of action. Ignoring this type of warning could cause an application to have potentially

unexpected behavior or unanticipated vulnerabilities. For example Figure 2.3 shows the warning

produced for the C++ code ‘‘int *a = 60;" when compiled with gcc at standard warning levels.

Architect and design for security policies is the third secure coding practice that CERT

describes [44]. They suggest creating a software architecture that allows the developer to implement

20

and enforce security policies. Moreover, they give the following example: “if your system requires

different privileges at different times, consider dividing the system into distinct intercommunicating

subsystems, each with an appropriate privilege set [44].” In the given example, if one subsystem

were to become compromised the other subsystems would be able to continue operations. In

addition, wherever communication is involved between the sub systems data sanitization should be

implemented.

Keeping designs simple is the fourth secure coding practice [44]. By creating uncomplicated

designs fewer errors surface. More complex designs lead to a larger number of errors that can

be harder to find. Complexity is often unavoidable for functions or applications. For this reason

reducing complexity is relative to how much complexity can be reduced.

Defaulting to deny is the fifth secure coding practice [44]. The idea behind this practice is

to not trust the user. When determining whether or not to allow access to a system, rather than

assuming the user should have access unless they give an indication that they should not, assume

access is not granted unless the user proves they should have access.

Adherence to the principle of least privilege usage is the sixth secure coding practice [44].

Running every application with the smallest amount of privileges required to operate results in

dilution of successful attacks. Attackers who successfully exploit an application with low privileges

are not able to do as much damage as an attacker who exploits an application with system level or

root privileges.

Sanitizing data sent to other systems is the seventh secure coding practice [44]. Sanitizing

data passed to subsystems prevents attacks from potentially invoking unused functionality through

context misunderstandings [44]. In multi-component systems inputs and outputs may be handled

in different ways. In order to ensure the target subsystem functions properly data sanitization

should be handled before input is passed to it.

21

Practicing defense in depth strategies is the eighth secure coding practice [44]. If an upper

level defense becomes compromised a lower level defense layer should attempt to defeat attack.

Use effective quality assurance techniques [44]. This is the ninth secure coding practice

and one that is often overlooked. High quality assurance testing can be effective at finding and

neutralizing vulnerabilities before software is deployed for usage. Validation and verification are

a critical stage in the software development cycle that is often overlooked. In complex systems

exhaustive testing may not be feasible. For this a combination of random and end case test vectors

and boundary scanning should be used. Quality testing should take place on different platforms

with common software configurations.

Adopting a secure coding standard is the tenth and final practice published by CERT [44].

Adherence to strict coding standards helps identify abnormalities in code that could potentially

lead to vulnerabilities. An example of this is to consistently verify the success of a dynamic memory

allocation.

These ten coding practices are preventative measures that help fortify code against attackers.

When combined with knowledge of common insecure functions such as strcpy(), which will be

shown to be dangerous in Chapter 6, these methods can greatly reduce the number of vulnera-

bilities in a program. Unfortunately, these methods are only truly effective if followed during the

development cycle. When a vulnerability is discovered after a software system has been deployed,

other defensive measures must be taken into consideration.

Since 2003 Microsoft has released its security updates on the second Tuesday of each month

known as ”Patch Tuesday [35].” Vulnerability patching is the reactive measure software developers

take to fix mistakes they made in the original development of their software and prior patches.

Quickly patching known vulnerabilities is a necessity for securing the application level security

domain.

22

2.3.2 Self-Defending Software

Self-defending and self-healing software is code developed to detect, defend, and recover from

attacks. This resilience is most commonly used by host-based intrusion detection systems and

antivirus software. The increasing sophistication of malware has led to malicious code that is

capable of seeking out defensive mechanisms and deactivating or functionally disabling them. This

can be accomplished in several ways, first by attempting to kill a process through a library call to

TerminateProcess, TerminateThread, ExitProcess, or SuspendThread [24]. Another way is to

inject code into the process of the antivirus application that modifies the logical functionality of

the program at run time. This is potentially a way of functionally disabling the antivirus software

even though it is still technically running. In a 2004 study that tested the ability of several common

antivirus packages’ to recover from attack attempts, Kaspersky labs’ antivirus software was the only

one capable of surviving attacks launched even with administrator privileges. Several other antiviral

applications were easily defeated and others had mixed results. With local administrator privileges

F-Secure and Pestpatrol were deactivated, while Panda and Trend Micro’s antivirus protection was

automatically restarted after 30 seconds. Grisoft and Symantec continued functioning though their

processes were killed [45]. This study shows that several of the tested antivirus software packages

are capable of self-defense.

This kind of defense is ideal not only for antivirus software but also for general purpose application

development. This will require sensors that actively seek vulnerabilities and attacks in progress, in

an effort to automatically fix and recover from them. It is unrealistic to expect a host level security

system to perform this sort of fine grain monitoring on all the different applications running on a

system. For that reason, these sensors need to be built into the applications themselves or added

dynamically at runtime.

2.3.3 Static Application Level Sensors

Static application level sensors are coded into the program during the development cycle. They

report information related to functional operation of the application at runtime. For example,

23

web applications deployed in Apache often report information pertaining to database connections,

access attempts, and other functionality. The problem with these static application level sensors

is they often are being used improperly. Most of the reports created from these application level

events are used only for debug purposes and the logs created are never examined unless absolutely

necessary. If an attacker is attempting a brute force password attack on an Apache web application

sensors could easily be developed into the system to detect this. More application level sensors

need to be implemented during the development cycle. Also the three step process that is seen at

the other security level domains needs to be implemented. Rather than simply logging these events

to a file, the application should run automatic analysis to discover any inconsistencies in expected

execution as it runs. The result of this analysis could then trigger a response, possibly in the form

of a code sequence that immediately neutralizes a suspected attack in progress.

2.3.4 Dynamic Application Level Sensors

Many applications running on a computer system do not readily have their source code available

to add static event sensors. This is the case with common proprietary applications, such as the

Microsoft Office suite or with legacy applications in which source code is no longer available. The

work presented in this thesis proposes a solution to this problem that is based on the combination of

reverse engineering and dynamic-link library (DLL) code injection, which will be discussed further

in Chapter 3. The basic idea is to create an execution thread inside an application’s process

that dynamically deploys customized sensors. The locations of these sensors are found by reverse

engineering the application and discerning where critical data and functions reside in the virtual

memory space. After these sensors are deployed analysis is run on the data they produce to develop

active responses to potential threats. It is understandable why reverse engineering is required for

legacy software but in the case of proprietary software these type of defenses should be built into

the application. If the vendor fails to do this they should at least provide the proper hooks to add

them dynamically.

24

2.3.5 Application Level Security Domain Summary

The majority of software vulnerabilities manifest within the application level security domain. Yet

it is this domain that is the least protected. Most of the defenses in this domain are focused on

avoiding common coding mistakes that lead to vulnerabilities. The combined knowledge of common

exploits with a secure coding practice can greatly reduce the number of problems in a program.

However this is not a total solution because as the complexity of architectures increases unexpected

behavior can emerge. The next application level defensive measure deals with developing patches

in a timely manner for code that is known to be vulnerable. Major software companies have been

doing this for many years. “Patch Tuesday,” the second Tuesday of each month, has become the

official exploit correction day for Microsoft. Unfortunately, counting on developers to not make

mistakes and simply fixing them when they do is the reason attackers always have the upper hand.

Attackers show developers what needs to be patched by exploiting the vulnerabilities prevalent in

the software. The problem is that the damage done in the initial attack can be costly.

New application level defensive mechanisms need to further explore the concept of self-healing

code. Code that can recover from an attack is impressive in of itself but extending that capability

to develop code that can monitor its own health and deploy dynamic defenses depending on the

results of that health monitor would be a significant technical advancement. This capability could

be accomplished through application level sensors. The functionality could be built into new

programs and dynamically added to existing programs at run time.

2.4 Conclusions

There are many existing techniques for defending the many security domains. When combined these

form the standard defense in depth idea of cybersecurity. The strongest defenses follow the three

step process described throughout this chapter. Step one is to acquire data through a customized

sensor. Step two is to analyze that data, and step three is to respond to any threats that the

analysis has detected.

25

At the network level security domain the three step process is seen in many of the network

based intrusion detection systems. The sensors collect packet information that is then passed on to

signature and anomaly based analysis systems. From there the potential problems are filtered out

and administrators are notified. Should defenses at this level fail the subsequent layer of defense is

the host level security domain.

The host level has many different software based solutions for protecting a workstation, such as

host based intrusion detection systems and antivirus software. Each of these methods follows the

three step process: collect, analyze and respond. In the case of the host based intrusion detection

system, sensors come from many different sources such as process analytics, file system monitors,

and many other locations.

The next level of system defense is the application level where the three step process is not well

implemented. Developers are given the responsibility to not make mistakes in their code that could

lead to problems. If a mistake is made it is patched after deployment. The defensive measures are

centered more around coding properly the first time and less on detecting problems as or before

they are exploited. One possible solution is static and dynamic application level sensors. The

advent of multiprocessor systems opens the door for processor cores that are dedicated to securing

the applications running on a system. Threads of execution can be spawned inside the virtual

memory space of processes running on the system in order to perform security analysis. The next

two chapters will explore the required technologies to efficiently implement dynamic application

level sensors.

26

Chapter 3

Dynamic-Link Library Code Injection

Dynamic-link library injection is the sequence of steps taken to forcibly load code contained in a

DLL into the virtual memory space of another process. Attackers have been using this technique

for many years to execute malicious code without detection. For that reason code injection has

acquired negative connotations. However, this same technique can be used defensively to develop

dynamic application level security sensors. Chapter 3 discusses the different types of code injection

and particularly details DLL injection.

3.1 Types of Code Injection

Code injection comes in several forms such as SQL, XSS, and DLL injection. Each of these methods

will be explained further, but the form this thesis will focus on is DLL injection. Understanding

the similarities and differences of other injection methods is important to the understanding of how

DLL injection is a unique class of code injection and how it can be used defensively.

3.1.1 SQL Injection

SQL injection is a form of injection intent on attacking databases. Attacks can result from the

failure to validate user input. Attackers use SQL injection in an attempt to insert, delete, modify,

or extract data. In 2004, this type of attack was used to collect 40 million credit card numbers

from a CardSystems, Inc database [32].

27

Figure 3.1: Type of errors used in a full-view SQL injection attack

In general there are two common types of SQL injection attacks: full-view attacks and blind

attacks. Full-view attacks probe the system with inputs and look at the error messages reported to

determine how to formulate their attack. Figure 3.1 shows an example of the kind of output used

in full-view attacks. Blind SQL injection attacks are used when web applications are developed

in such a way that prevents error messages from being displayed. Table names and contents are

not known in these types of attacks, therefore a blind SQL attack probes the system with boolean

queries to extract information one character at a time [32]. An example of an SQL injection attack

can be found in the discussion of input validation in Chapter 2 on page 17.

SQL injection attacks are fairly noisy and easy to detect. Many times, defending against them

is as easy as input validating. In other cases, parsing web server log files or building signatures for

NIDS or HIDS can defend against these types of attacks.

3.1.2 Cross-Site Scripting Injection

Cross-site scripting injection attacks are another variant of code injection that relies on a web

application’s failure to validate user input. Eighty-four percent of the web-based vulnerabilities

documented by Symantec during the last six months of 2007 were cross-site scripting vulnerabilities

28

[52]. The intended targets of these attacks are the users who visit a website after the attack has

occurred. XSS attacks are successful due to the nature of web browsers. When a user accesses a

webpage, the HTML code is downloaded and interpreted by the web browser. Scripting languages

can be embedded into the website’s markup language in several ways, such as <script> tags and

attributes such as, style or src. On webpages that store and display user input such as blogs,

auctions, or comment sections, attackers can input <script> tags with malicious script code. If

the site fails to validate the attacker’s input, other users that view the site later download the

HTML with these <script> tags containing malicious code.

XSS attacks are difficult to protect against for several reasons. First, neither encryption nor

firewalls can protect against them. Second, there are many ways to trick browsers into executing

the malicious code, and third, these attacks are easily disguised [53].

Example: Cross-Site Scripting

The following example is of a basic XSS injection. An HTML page prompts the user to input their

name. When the user presses submit, it sends the value of name to a PHP script that generates

a custom welcome page with the user’s name. The file “input.html” is the markup for the initial

page that prompts the user for their name.

Code: input.html

<html>
<body>
Please Enter Your Name.
<form name=“input” method=“post” action=“name.php”>

<p>Name: <input type=“textbox” name=“name” size=“70”/></p>
<p><input type=“submit” value=“Submit” /></p>

</form>
</body>

</html>

The following code segment shows a valid input string that would result in a basic cross-site scripting

attack.

Code: input string

29

<p onmouseover=javascript:alert(911) > Christopher T. Rathgeb </p>

When the user hits submit on the webpage, the input string is sent to “name.php” which embeds

the user input into the customized page.

CODE: name.php

<?php
echo “ <html> <body>”;
echo “Welcome: ”. $ POST[’name’];
echo “</body> </html>”;

?>

The markup for the page that “name.php” generates is seen below. The embedded javascript can

be seen inside it. When the user moves their mouse over the name a popup window is thrown to

the screen.

Code: generated HTML page

<html>
<body>

Welcome:
<p onmouseover=javascript:alert(911)> Christopher T. Rathgeb </p>

</body>
</html>

This sequence of events can be seen in Figure 3.2.

3.1.3 DLL Injection

The SQL and XSS injection methods are both targeted towards web-based applications. DLL

injection differs in that it targets the processes of applications running on a system. It forces the

execution of precompiled code inside the virtual memory space of another application’s process.

This process is accomplished using multi-threading.

Threads are alternate execution streams that run concurrently or pseudo-concurrently with their

parent process. Whether or not the execution streams are concurrent or pseudo-concurrent de-

pends on factors such as, the processor, operating system, and thread model. Essentially they

are lightweight processes that share state, memory address space, and other resources within their

parent process. Multi-core processors offer concurrency by tasking each core with different threads

30

Figure 3.2: Cross-site scripting injection example

31

Figure 3.3: Thread level concurrency on single and multi-core processors

of execution. On the other hand, single-core processors offer pseudo-concurrency by multiplexing

the processor between execution streams. This concept can be seen in Figure 3.3.

Threads are the ideal construct for DLL code injection, because after the code of a DLL is loaded

into the memory of the target process, a thread can be spawned within the host process. This allows

the code to execute. Later in this chapter several methods of this technique will be detailed.

Example: Injecting “Hello World!” into Internet Explorer

In the following example, helloworld.dll is injected into iexplore.exe. This results in the DLL simply

displaying a message box that says ”Hello World!” The code for helloworld.dll can be seen below.

CODE: helloworld.cpp

bool APIENTRY DllMain(HMODULE hModule,DWORD ul reason for call, LPVOID lpReserved){
MessageBoxA(NULL,“Hello World!”,“Hello World!”,MB OK);
return true;

}

Figure 3.4 is a screenshot of the output when injected into an active instance of iexplore.exe.

32

Figure 3.4: Result of helloworld.dll being injected into iexplore.exe

33

3.1.4 Summary of Types of Code Injection

Understanding the basics of other forms of code injection is crucial to understanding DLL injection,

which is the method used in this thesis. SQL injection attacks exploit databases through user input

that has not been validated. This method can be used to insert, delete, modify, or extract data from

databases. XSS injection exploits user input to embed malicious scripts inside the HTML markup

downloaded by the user when the view a webpage. Finally, dynamic link library injection targets

the processes of applications running on a computer system. It forces the execution of precompiled

code within the virtual memory space of the host process. The next section will discuss several of

the techniques used for implementing DLL injection.

3.2 DLL Injection Techniques

There are many methods of DLL injection such as Windows APIs, Windows hooks, code caves, and

reflective injection [8] [7]. Of these methods, the two most common techniques are Windows APIs

and Windows Hooks. This section will provide a general overview of these two methods. More

detail and source code implementations of these methods can readily be found on the internet.

As stated in the introduction these methods assume some form of execution is already on the

system. In the case of malware the execution is usually accomplished through email attachments,

Trojan horses, or some sort of vulnerability such as a buffer overflow. In the defensive mechanisms

presented in this work, execution can be manually initiated.

3.2.1 Windows APIs

DLL injection can be achieved through the correct combination of Microsoft Windows APIs. The

WinSpy project on www.codeproject.com provides the following sequence of API calls to inject a

DLL into a target process [25]. This information is common knowledge and used by many “script

kiddies” to perform DLL code injection.

1. Retrieve a HANDLE to the remote process (OpenProcess) [25].

2. Allocate memory for the DLL name in the remote process (VirtualAllocEx) [25].

34

3. Write the DLL name, including full path, to the allocated memory (WriteProcessMemory)

[25].

4. Map the DLL to the remote process via CreateRemoteThread and LoadLibrary [25].

5. Wait until the remote thread terminates (WaitForSingleObject); this is until the call to

LoadLibrary returns. Put another way, the thread will terminate as soon as DllMain (called

with reason DLL PROCESS ATTACH) returns [25].

6. Retrieve the exit code of the remote thread (GetExitCodeThread). Note that this is the value

returned by LoadLibrary, thus the base address (HMODULE) of our mapped DLL [25].

7. Free the memory allocated in Step #2 (VirtualFreeEx) [25].

8. Unload the DLL from the remote process via CreateRemoteThread and FreeLibrary. Pass

the HMODULE handle retreived in Step #6 to FreeLibrary (via lpParameter in CreateRemoteThread)

[25].

9. Wait until the thread terminates (WaitForSingleObject) [25].

3.2.2 Windows Hooks

The next technique commonly used to perform DLL injection is the Windows hooks method. This

method works through the SetWindowsHookEx() function. This function hooks Windows messages

for local and remote processes. A hook is another word for a detour, which will be described

in detail in Chapter 4. Hooks are a way of triggering code segments to be executed whenever a

function or message is called. The injected DLL has a filter function that is added to a linked list

of existing hooks. When the Windows message is triggered, this list is traversed and the provided

functions are executed. Therefore, the DLL injection is handled implicitly through the hooks [16].

3.2.3 Summary of DLL Injection Techniques

The Windows APIs and Windows hooks techniques are two of the most commonly used DLL

injection methods. This section examined the general procedure taken by these two methods. The

35

next section will discuss techniques used to detect DLL injection.

3.3 Detecting DLL Injection

Detecting a DLL injection depends on two factors, the method of code injection and the measures

the programmer went to in order to avoid detection.

The first factor depends on the method through which the code has been injected. Certain

methods are more detectable then others. For example, the Windows API injection method is

easily detected in several ways. It explicitly calls LoadLibrary(). A functional hook placed on this

API call could be used to catch this method. A second method uses the Windows Process API,

which provides the functionality to enumerate loaded modules for a given process. The enumerated

list can be scanned for injected DLLs [42]. For each of these methods of detection, a countermeasure

exists to avoid detection.

For this reason, the second factor of detecting DLL injection depends in part on the programmer’s

determination to avoid detection. In the example of the enumerated module list, the injected library

can remove itself from the enumeration lists. Many DLL injection techniques are detected by file

scanners and antivirus software because of their hard disk activity. These detection methods can be

evaded by loading dynamic-link libraries directly from memory without disk interaction. Reflective

DLL injection is an example of a technique that accesses the disk making it harder to detect [8].

The research presented in this thesis does not implement any of the anti-detection mechanisms

described in this section. However, stealthy execution is possible if it is required.

3.4 Existing Applications of DLL Injection

DLL injection, like other forms of code injection, generally has a negative connotation. These

negative connotations stem from its association with malicious software. DLL injection allows the

user to force the execution of their code inside another process with that processes’ access privileges.

36

Once inside the process, it shares the state, memory address space, and resources with the host

process. Many viruses and worms have used this technique to execute code without detection.

While there are many ways this technique can be used improperly, there are several legitimate

usages as well.

3.4.1 Malware

There are many features of DLL injection that make it attractive to malware such as viruses

and worms. First, this form of code injection is relatively easy to use. “Script kiddies” can

perform an Internet search and obtain working code for different methods of injection. Second, as

described in the previous section, the ability to avoid detection methods allow for stealthy execution.

Stealth is one of the most attractive features of DLL injection to malware. In general, the longer

malware lives undetected the more damage it does. Third, while some methods are more publicly

known than others, there are many different techniques for process injection. This is beneficial to

malware because varying injection methods can help avoid detection by code signature. Fourth,

the nature of threads grants malware access to the memory of the host process. This access can

be used to steal information or modify the logical flow of the application. Fifth, when malware is

successfully operational within a process, it assumes the access privileges of that process. Should

a piece of malware find its way into a system or administrator-owned process, it can effectively

perform operations at that access level. Finally, malware can mask its functionality and hide from

network and host-based intrusion detection systems by cleverly attaching to the right processes.

For example, some forms of malware attempt to connect to a central server. If malware attempts

to connect through notepad, it could raise suspicion. However, if it uses a web browser to connect,

it is more likely that an intrusion detection systems would perceive this as normal activity [6].

Example: Thread Bomb

The thread bomb attack is a relatively harmless piece of malware created for the purpose of this

example. This attack injects into a process and spawns off the maximum number of threads allowed.

Each created thread enters an infinite loop, which quickly exhausts the computer’s resources. The

37

following is the code that does this.

CODE: threadbomb.cpp

#include <windows.h>
#include <stdlib.h>

#define MAX THREADS 8192
#define HALF SECOND 500
void ThreadBomb();

bool APIENTRY DllMain(HMODULE hModule,DWORD ul reason for call, LPVOID lpReserved) {
for(int i=0;i<MAX THREADS;i++)

CreateThread(0,0,(LPTHREAD START ROUTINE)ThreadBomb,0,0,NULL);
while(1) {}

}

void ThreadBomb() {
while (1) {

Sleep(HALF SECOND);
}
ExitThread(0);

}

The results can be seen in Figure 3.5. The thread bomb does no real harm to the system but

illustrates how easy it is to create malware with process injection. This type of attack can quickly

disable a system and require a reboot. If code were added to this attack to automatically run upon

reboot the thread bomb could become much more malicious.

Example: The Storm Worm

The Storm computer worm surfaced in early 2007 and targeted computers running variants of

Microsoft Windows. It creates a peer-to-peer distributed botnet capable of lunching DDoS, spam,

and phishing attacks. The fact that the Storm worm is peer-to-peer and not centralized makes it

difficult to destroy [49].

In March of 2008, Offensive Computing, LLC. performed a malware analysis on a variant of the

Storm worm. The particular strand of the worm loads a driver into the kernel which injects the

Storm worm into services.exe. The worm begins by enumerating the process list to determine the

id of services.exe. Next, the payload of the worm is decrypted with a simple XOR cipher. After that

38

Figure 3.5: Effect of a thread bomb in action

the worm attaches to the process space and allocates memory through the KeAttachProcess and

ZwOpenProcess functions. The code is then inserted into the running process [38]. In the case of

the Storm worm, the inserted code is in executable form not DLL form; however, the end result is

the same.

3.4.2 Functionality Additions

Thus far code injection has been discussed in terms of malware. However, not all code injection

is malicious. DLL injection can be used to add functionality to software systems in which source

code is not available. Such systems may include legacy code, lost code, or proprietary applications.

For example, Company X has a custom software system they use to do statistical analysis on client

data. One day they decide they want the output of their statistical analysis to be web accessible,

but they do not have the source code to the software system anymore. DLL injection allows them to

insert the necessary functionality. If they were to inject a DLL into the process that harvested the

output of the statistical model and put it into an SQL database they could write a web application

that displays the data through SQL queries.

39

Figure 3.6: Extended functionality of Task Manager [40]

Example: Extending Task Manager

In the TaskEx project on www.codeproject.com, DLL injection is used to extend the functionality

of the Windows Task Manager. First, an application sits in the background waiting for instances

of task manager to popup. When an instance is discovered, it injects a DLL that installs an extra

menu named “Extensions” to the application’s main menu. From here additional information can

be obtained about particular processes [40]. A picture of the extended functionality addition can

be seen in Figure 3.6.

Example: MMORelay

MMORelay is a software system that I developed in 2008 to add functionality to massive multiplayer

online role playing games. MMORelay is an application the user runs that connects to the video

game and relays the chat functionality of to a web interface. This web interface can be accessed

and interacted with from any web browser around the world. The end result is the added ability

of a user to chat with their virtual video game friends without being at their computer.

The system adds the relay functionality to the game through DLL injection. The injected code

detects output to the chat window of the game and sends it off to the web server. The web server

queues the messages in a database. When the user connects to the website he or she pulls the

messages from the database and can actively respond to them remotely. The response is sent back

to the person’s computer and ultimately put into the game.

40

Figure 3.7: MMORelay’s chat functionality addition through DLL injection

41

3.4.3 Summary of Existing Applications of DLL Injection

Dynamic-link library injection is a powerful method that can be used by software with both ma-

licious and legitimate intent. Malware uses this method because it provides a simple, robust, and

stealthy way of executing malicious code within the addresses space of another process. This allows

the malware to assume the privileges of the host process and hide from intrusion detection systems.

On the other hand, DLL injection can also be used legitimately to extend the functionality of soft-

ware that has no source code available. MMORelay is an example of a software system that uses

DLL injection to extend the functionality of a video game. It provides web-based interoperability

to the chat features of the game. Another example of a legitimate use of DLL injection is the func-

tional extensions added to task manager, which can be seen in Figure 3.6 [40]. The next section

discusses dynamic application level sensors as a new application of DLL injection application.

3.5 Dynamic Application Level Sensors Through DLL Injection

Dynamic application level sensors can be implemented through DLL injection. The same legitimate

methods used to add functionality to applications can be used to add dynamic sensors to appli-

cations. These sensors have a unique advantage over host level security domain defenses. They

execute within a thread of the application, which gives them access to the application’s state, vir-

tual memory, and resources. This information can be extracted by the injected DLL and used to

help secure the system against external and internal threats.

3.5.1 External Threats

External threats are constantly probing computer systems looking for any sign of weakness. Dy-

namic application level sensors are uniquely positioned to defend against these threats. For example,

a sensor could be setup to collect data on the normal executional flow of a program. This data

could then be used to build a profile for the program logic flow. Should the program deviate from

this executional flow, such as a buffer overflow exploit used to install malicious shell code, the

sensor data returned would reflect this abnormality and the system performing analysis would see

42

the deviation. Another example is a sensor that detects potential buffer overflow, memory leaks,

or arithmetic overflow and dynamically patches them. For example, a sensor reports to the anal-

ysis station that an unsafe strcpy() is being executed. The response mechanism then deploys a

functional detour that replaces the unsafe function with a safe version.

3.5.2 Internal Threats

As discussed in Chapter 2, the insider threat problem costs businesses tens of millions of dollars

each year [22]. Dynamic application level sensors could help protect against malicious insiders.

The state information of applications and usage patterns of insiders can be monitored at run time,

through DLL injected sensors, to profile normal usage. Should a malicious insider begin acting

outside these normal patterns, the application level anomaly detection system built from dynamic

application level sensors would detect it. The example sensor presented in Chapters 5 is targeted

at malicious insiders.

3.5.3 Summary of Dynamic Application Level Sensors Through DLL Injection

DLL injection provides the required constructs to implement dynamic application level sensors.

These sensors can be used to probe an application in ways that were previously not possible. Ap-

plication level security domain defenses can be built to protect against threats to the network and

computer system, both external and internal. Chapters 5 and 6 will explore example implementa-

tions of dynamic application level sensors.

3.6 Conclusions

There are several types of code injection that can be used in malicious ways, such as SQL, XSS,

and DLL injection. However, DLL injection can also be used legitimately to add dynamic sensors.

The idea behind DLL injection is to force a thread of execution inside a targeted host process. This

thread has access to the state, virtual memory, and resources of its parent process and therefore has

a unique opportunity to collect fine grain data and process it for defensive security applications.

43

The next chapter will discuss the sequence of steps taken to develop one of these custom application

level sensors.

44

Chapter 4

Developing Dynamic Sensors

Dynamic application level sensors extract critical information from processes at run time. Develop-

ing these sensors is a multi-stage process. The first stage is to determine the extractable data. This

primarily depends on two factors, the security threat and target application. The second stage

is to reverse engineer the target application. This stage is a challenging feedback loop of static

and dynamic binary analysis. The goal is to extract memory locations for critical data elements

and functions that can be logically detoured. The third stage uses the extracted memory locations

discovered in the reverse engineering stage to automate the data extraction in the form of a DLL

that is injected into the application. Finally, the fourth stage is to analyze the data and respond

to any threats. This chapter will describe each step of this multi-stage process; however, it will

concentrate primarily on the first three stages. This is due to the fact that the focus of this thesis

is not on the analysis and response but rather the sensor elements.

4.1 Determine the Extractable Data

Identifying what type of data is collectable is the first stage of developing dynamic application level

sensors. This directs the reverse engineering stage. In order to effectively begin reverse engineering,

the programmer needs to know what valuable information to seek. Determining the type of data

to collect primarily depends on two factors: the security threat and targeted application.

45

4.1.1 The Security Threat

The first factor that influences what type of data to collect is the security threat. For example,

the type of data needed to defend against insider threat differs from the type of data required to

defend against malware.

An insider threat detection sensor could collect information pertaining to a user’s usage tendencies

for a particular application, such as all possible user input for an application. The input could

be then used to model how the user typically interacts with that particular application. In the

analysis stage an anomaly detection algorithm could profile the users’s normal behavior within the

application, and then respond to any behavior that is abnormal. Chapter 5 creates the sensor

portion of this defense on the application putty.exe, which is a client SSH program.

A malware detection sensor could extract runtime information on the binary execution of soft-

ware functions that are known to be malware free. Statistical analysis could provide a threshold

for expected runtimes of these functions. Should a form of malware attempt to nullify or inject

malicious code into one of these code segment, the sensor would report timings outside of accept-

able mathematic standard deviations. Additionally, this type of defense would be able to protect

against polymorphic code, because polymorphism tends to increase the size of the malware code.

This is done in an attempt to obfuscate the true functionality from signature matching methods

and reverse engineering. The increased size of the malware code would result in longer timing

analysis making it appear even more abnormal. This sensor has been created and is detailed in

Chapter 6.

The first factor to developing dynamic sensors that can potentially detect these security threats

is determining what to collect. Deciding which application the sensor will collect data from is the

next factor that needs to be considered.

46

4.1.2 The Application

Ascertaining which applications to develop sensors for is the next factor in determining what data

to collect. Selecting the application has several dependencies, such as how specific the sensor is to

the application, what applications are available to run, and the language in which the application

was originally coded.

The first dependency is how specific the sensor is to the application. If a sensor is highly specific

to a particular application then the application must fit the sensor’s requirements. For example,

a sensor could be developed to collect information on the keywords or phrases entered into an

internet search. Text analysis could then be run on the keywords for phrases such as “how to build

a bomb” or “how to plant a computer virus.” The requirements for such an application are that

the application must be able to perform Internet searches. The most likely choice of application

would be a web browser, however any program that has a iframe embedded into it also meets this

specific constraint. Some programs embed dynamic advertisements inside iframes of applications.

Generic sensors can be applied to any application that fits a set of constraints. For example,

a constraint may be that the application must render graphics to the screen using Microsoft’s

DirectX. This is could be the case for games or other graphic intensive applications. A sensor that

could have this particular constraint would be one that collects data about what is being drawn to

the screen through the render function of DirectX.

The second dependency of the choice of application to collect data from is the set of available

applications, particularly the subset of applications that run regularly. This subset may change

depending on the users of a system. For example, an accountant is more likely to use a program

like Quicken then a computer programmer. It may be of particular interest to the employer of this

accountant to install application level sensors that monitor the accountant’s usage of this program.

For this reason, the company could develop a sensor that canonically captures and logs all possible

user input to Quicken. The sensor not only captures the inputs but also the biometric timing

data of the inputs. An anomaly detection algorithm, then processes the extracted data and builds

47

a standard usage baseline for the accountant’s interactions with Quicken. This baseline includes

what operations the accountant normally executes within the program, the standard transitions

from one action to the next, and the biometric timings related to those transitions. If the accountant

leaves his desk to go to lunch and forgets to lock his door, the company does not need to worry

about disgruntled coworkers attempting to modify the books to steal money. The application level

sensor captures, logs, and processes all of the interactions to Quicken. A properly trained anomaly

detection system would be able to tell that the accountant was not the individual using Quicken

during the lunch break. There would also be a log file showing the sequence of events inside the

program.

The final dependency on the choice of application for which to develop sensors is the language

that the application was originally coded. As stated in the introduction, the work presented in this

thesis makes several assumptions. These assumptions include that the applications these sensors

are dynamically added to run on Microsoft Windows and are programmed in a language that can

be disassembled into x86 assembly, such as C or C++.

4.1.3 Summary of Determining the Extractable Data

Determining the type of data that is collectable helps pinpoint what to look for in the reverse

engineering stage. There are two main factors that help decide what type of data to collect. The

first factor is the type of security threat. The data collected for insider threat detection is different

than the data collected for malware detection. The second factor is choosing which application

to attempt to collect data from. This decision is dependant on how specific the sensor is to the

application, the subset of applications that are run on the system, and the language in which the

application was coded. Once the application and type of data are determined, the next step is to

reverse engineer the binary to extract the critical data and functions. This stage will be discussed

in the next section.

48

4.2 Reverse Engineer the Application

Reverse engineering is the second stage of the multistage process. It is the sequence of steps taken

to break down an application to machine readable code for static and dynamic analysis. The goal

is to extract critical memory locations for function detours and data. Much like code injection, the

term “reverse engineering” has acquired a negative connotation. This is due to the existing motives

of many individuals who reverse engineer software. Such motives include, finding vulnerabilities in

code in order to developing malware, analyzing existing malware in order to build a defense, and

commercially gaining a competitive advantage by learning the “trade secrets” of a competitor.

However, reverse engineering principles can be used constructively in order to dynamically add

defensive sensors to applications. Much like analyzing existing malware, the intention is beneficial

to the computer owner. As discussed in earlier chapters, the types of software that require reverse

engineering are those for which source code is not available, such as proprietary, legacy, or lost code.

In cases where code is available, such as open source or in-house programs, reverse engineering is

not required as the sensors can be compiled directly into the application.

In the case of legacy or lost code, reverse engineering is a necessary measure. However, in the

case of proprietary software, cooperative reverse engineering should not be necessary. Companies

should either provide the source code to their products or guarantee the security of their code.

At the very least they should provide the proper hooks for adding security dynamically after the

software has been deployed. Unfortunately, due to the nature of business and lack of policy to

govern proprietary software security requirements, proprietary software must be reversed as well.

The goal of the reverse engineering stage is to extract memory locations for critical data elements

and functions that can be hooked. This section will focus on the reverse engineering process, and

detail the tools and methods used to extract the required data for the security sensor.

49

Figure 4.1: Reverse engineering feedback loop

4.2.1 The Reverse Engineering Process

The reverse engineering process is a challenging feedback loop of static and dynamic binary analysis,

critical data extraction, sensor design, and process injection. Static analysis is the process of

disassembling the application into machine code and studying it while it is in a not running sate. On

the other hand, dynamic analysis studies the application while it is in a running state. Breakpoints

are inserted and the dynamic state of the registers, the stack, and programmatic flow are studied.

From this static and dynamic analysis data is extracted and a sensor designed. The reason the

reverse engineering process is a feedback system is that often finding the targeted information is

not trivial. Intermediate step sensors are developed to provide more information and gain further

insight to the functionality of the program. These intermediate step sensors are injected into the

application to assist in finding the targeted information in future dynamic analysis steps. This

reverse engineering feedback loop ends when the targeted information is discovered. This feedback

loop can be seen in Figure 4.1.

4.2.2 Reverse Engineering Tools

As with any job, having the right set of tools can make the task easier. For reverse engineering, the

proper set of tools should consist of a dissembler, a hex editor, a jump calculator, and a compiler.

The following is the set of tools used to perform the work presented in this thesis.

1. IDA Pro is an interactive disassembler and debugger. It supports over 50 processor families

and allows the user to analyze the assembly code of an application both statically and dy-

50

namically. When used dynamically, it runs the application in debug mode, which allows the

user to add breakpoints and step through the program’s assembly code line-by-line. At each

step, dynamic information, such as the state of the registers and stack, can be analyzed [17].

2. Winhack 2.0 is a traditional memory editor. It displays the virtual memory for each process

and allows modification at run time.

3. Cheat Engine is a more sophisticated memory editor. It has additional functionality to

iteratively scan memory for specific values, freeze memory locations from value changes,

snoop code that access specific memory locations, and find references to pointers. The full

functionality of Cheat Engine is not limited to the described capabilities and can be found

online [5].

4. JumpCalc is a program used to calculate the hexadecimal representation of a modified branch

instruction for the x86 instruction set architecture. This is useful when changing the condi-

tions of a branch. For example, turning a conditional jump, such as JNE, to an unconditional

jump, such as JMP, changes the hexadecimal representation. This will be discussed in further

detail in the next subsection.

5. Visual Studio 2008 is a compiler. It is used to develop the intermediate step sensors and

ultimately the final sensor.

Screenshots of each of these tools in action can be found in Appendix A. The next section will focus

on several of the methods used while reverse engineering an application.

4.2.3 Reverse Engineering Methods

The dynamic binary analysis portion of the reverse engineering feedback loop is where knowledge

of the code layout meets line-by-line execution. It allows the reverse engineer to study the state

of the application at a given instance of its execution. However, the dynamic analysis section is

not limited to running in debug mode. The combination of other methods can prove to be quite

helpful. Function detouring, logic path alterations, iterative memory scanning, and the outputs

51

Figure 4.2: Pictorial example of detours

from previous intermediate step sensors can all be used to help extract the critical data required

of the reverse engineering.

Function detouring, also known as a wedge or a hook, is the first method that can help extract

critical data. It is the process of “intercepting arbitrary Win32 functions on x86 machines [15].”

Detours work by replacing the first few instructions of the targeted function with unconditional

jumps to a detour function. The original function is saved in a “trampoline.” After the dynamically

added detour function is finished, the trampoline is used to resume execution as normal [15]. Mi-

crosoft research presented this concept and library in the Proceedings of the 3rd USENIX Windows

NT Symposium in 1999. They claimed that the typical reasons to intercept functions is to add

functionality, modify returned results or insert instrumentation for debugging or performance pro-

filing [15]. This work proposes a new reason, which is to use function detours to insert application

level cybersecurity sensors. Figure 4.2 shows a pictorial representation of function detours.

Logic path alterations can be used to help extract critical data. They are subtle modifications to

the application’s code at runtime that force a branch one direction or another. Logic path alterations

are ideal for determining the functionality of assembly functions. For example, a reverse engineer

observes the behavior of a function and decides to replace a conditional jump, such as JNZ, with

an unconditional jump, such as JMP. The reverse engineer does this in order to observe the new

behavior of the function within the application. This task can be accomplished with the JumpCalc

52

Figure 4.3: Logic path alteration example

tool. This tool calculates the hexadecimal representation of the new assembly instruction JMP. Then

the reverse engineer uses a memory edito,r such as WinHack 2.0, to change the memory location

of the JNZ instruction to the calculated hexadecimal representation of the new instruction. After

this logical path alteration, the branch is always taken. This can be seen in Figure 4.3.

Iterative memory scanning is the process of scanning memory for some criteria. After the results

are returned, the search is refined and performed again on the returned result set from the previous

search. This process is continued until the location of the targeted data is pinpointed. The tool

Cheat Engine provides this functionality. This is particularly useful for finding the memory location

of data that can be manipulated in the original program. For example, as the user punches text

into Notepad++, the text is stored into memory. Iterative memory scanning could be used to

pinpoint the start of this storage. Figure 4.4 shows this process.

4.2.4 Summary of Reverse Engineering the Application

The process of reverse engineering is a feedback loop. Multiple passes through the loop allow for

different static and dynamic analysis. Methods such as function detouring, logic path alterations,

and iterative memory scanning can be used to help understand the full functionality of an applica-

tion. This understanding allows for the extraction of the targeted types of critical data. The goal

of reverse engineering is to find the memory address of important functions and data constructs

within the application. The next step is to develop the sensor into a DLL that can be injected. The

DLL applies detours to the important functions to act as a checkpoint and log data that passes

53

Figure 4.4: Iterative memory scanning with Cheat Engine

54

through the function. The sensor then references the memory addresses of important data and

log the contents for further analysis. The next section will discuss the automation of the data

extraction.

4.3 Automate the Data Extraction

The reverse engineering stage provided the required memory addresses to apply function hooks and

extract the targeted sensor data. The final stage of the multistage sensor design process focuses on

automating the data extraction from the application. This is accomplished by developing a DLL

that can be injected into the application’s process at run time. This section will discuss coding the

actual sensor, the need for a development and deployment framework, and how to automatically

update the sensor when a software update is released.

4.3.1 Coding the Sensor

Sensors are dynamic-link libraries coded in unmanaged C++. Unmanaged C++ allows direct

access to pointers and in-lined assembly. When a sensor is injected into an application, the DLL

entry point is called. The following code segment shows the entry point for a DLL:

Code: DLL entry point

bool APIENTRY DllMain(HMODULE hModule,DWORD ul reason for call,LPVOID lpReserved){
switch (ul reason for call){

case DLL PROCESS ATTACH:
// create a thread of execution for the function ThreadFunc

CreateThread(0,0,(LPTHREAD START ROUTINE)ThreadFunc,0,0, 0);
break;

case DLL THREAD ATTACH:
break;

case DLL THREAD DETACH:
break;

case DLL PROCESS DETACH:
threadloop = false;
break;

}
return true;

}

The ThreadFunc() begins by calling an InitializeSensor() function. This function can be used

55

to add any detours to the application. ThreadFunc() then enters a while loop that waits for a

signal to terminate. The while loop keeps the thread alive and periodically calls a pulse function

that can be used to perform operations that need to be called regularly. The frequency of this pulse

can be changed and is set to 100ms in the next code segment. Finally, the thread function calls

ShutdownSensor(). This is the point that detours are removed and the sensor performs necessary

garbage collection.

CODE: ThreadFunc()

void ThreadFunc() {
InitializeSensor();
while (threadloop)
{

PulseCall();
Sleep(100);

}
ShutdownSensor();
ExitThread(0);

}

One of the goals of the reverse engineering stage is to extract the memory addresses of important

functions that can be detoured. The following library function can be used to add a detour:

CODE: The addition of a detour

DetourFunctionWithEmptyTrampoline((PBYTE)cp tramp,(PBYTE)0x413424,(PBYTE)cp detour);

The first argument to this function is the address of the trampoline. This trampoline holds the

assembly code that was overwritten to add an unconditional jump to the detour function. The

second argument to this function is the extracted memory address that is being detoured, and the

third argument is the address to the detour function. Function detouring is useful for extracting

the augments passed to a function.

The second goal of the reverse engineering stage is to extract the memory addresses of critical

data. Accessing this critical data is fairly simple in code. In order to find this information a

programmer declares a pointer for the data type and casts the memory address into the pointer.

Next, they references the variable to obtain the data stored at that location.

56

Finally, it is important to code the logic that directs the data pulled from the sensor to the

analysis center. Where the data is sent after it has been gathered depends on several factors. The

first factor is whether or not processing happens in real time. If not, the data can be logged to

a file. If the data is processed in real time, then the second factor of where to send the data is

to decide where the processing will take place. If the analysis happens inside the dynamic-link

library, then the logic for the analysis needs to be coded in as well. If the analysis happens in

a separate application on the host machine then some form of interprocess communication needs

to be added to the DLL. If the analysis happens on another machine, either a centrally located

server or distributed analysis computing cluster, then some form of network communication, such

as sockets, needs to be added to the DLL.

4.3.2 Signature Matching for Easy Update

When a vulnerability patch, feature enhancement, or any other software update is released, the

changed binary needs to be reversed again. To facilitate this process, signature matching, the same

technique antivirus scanners use to seek out malicious code, can be used. In the case of the memory

address of a function that is detoured, a signature of the function can be made. In the case of the

memory address of critical data, the signature of a section of code that accesses that critical data

can be constructed. If the proper signatures are constructed, pulling out the new memory addresses

is as simple as running a program that takes the binary and signature as an input and produces

the new memory addresses as an output. If the update modifies the section of code for which a

signature has been developed then signature scanning will not work. Through personal experience,

this is not the case the majority of the time.

4.3.3 Summary of Automating the Data Extraction

There are two main techniques for accessing the data. The first technique is to apply a detour on a

critical function to see how often it is called and what data passes through. The second technique

is to cast the memory address of critical data into a pointer and access the data stored at the

location. Both of these techniques can be used to efficiently sniff out sensor data. After coding

57

the sensor, logic needs to be coded into the DLL to direct the sensed data to the analysis center.

Finally when a binary is updated, signature scanning can be used to automate the extraction of

the necessary memory addresses for this stage.

4.4 Analysis and Response

While the focus of this thesis is on the sensor step of the three step process described in Chapter

2, it is worth discussing the types of analysis and response that can be performed on the sensor

data. The analysis and response steps of the three step process are the core of the application level

cybersecurity defense. They give the extracted sensor data meaning. This also means they serve

no purpose without sensor data. There are many forms of analysis, such as signature, statistical,

and biological based methods. There are also many different types of responses, such as automatic

patching of vulnerable codes, killing an infected process, and notifying authorities of insider threats.

This section will briefly discuss some of the analysis and response methods that can be applied to

the extracted sensor data.

The process of scanning for code signatures was described in Chapter 2. This method can

be applied dynamically at the application level to code segments of running processes to detect

specific forms of malware or shell code that may have modified an application. Again, signature

based methods are effective for finding specific code segments but fail to polymorphism.

There are many biologically inspired analysis techniques that can be implemented on the data

set, such as genetic algorithms, artificial neural networks, and particle swarm optimization. These

methods look to nature for potential solutions. Genetic algorithms are evolutionary algorithms

used for optimization and search problems. Genetic algorithms could potentially be used to search

for classes of malware on a system. Artificial neural networks are a collection of nodes that simulate

biological neurons that can be trained to classify, filter, and cluster data. These neural networks

could potentially be used to differentiate between normal and anomalous behavior of an insider.

Particle swarm optimization is an application of swarm intelligence that looks for an optimal so-

58

lution based a fitness function and several constraints. These constraints could be the global best

of a swarm, personal best of an individual in the population, or the local best of a small cluster of

elements in a swarm. Particle swarming analysis could be used to cluster insider behavior.

Another potential form of analysis is statistical analysis. Statistical analysis takes a quantitative

approach on the data. These methods attempt to extract knowledge by looking to the frequencies,

means, medians, and standard deviations of events. Statistical methods attempt to find correlations

between data sets. To do this it may perform regression analysis and attempt to find a function that

can fit the data with the least amount of error. Another approach would be to attempt to classify

groupings of data using naive Bayes classifiers. Each of these methods could be implemented to

understand the standard behavior of the internal workings of an application.

After analysis has been performed, there are many potential responses, including no action,

killing a process, denying access to a user, and notifying authorities. Each action will depend on

the nature of the threat. In the case of malware that has infected a system, it may be useful to

attempt to disable the malware by killing the process. In the case of an insider, the proper response

may be to notify the system administrators or managers. If analysis determines someone is trying

to hack a password, the system could temporarily disable the section of code that controls the

password check and lock the users ability to attempt to authenticate.

Different forms of analysis and response can be performed on the collected data. Ultimately,

the form of analysis depends on the nature of the threat and the type of data collected, and the

response depends on the results of the analysis. Experimentation with different forms of analysis

and response will be future work.

4.5 Conclusions

This chapter has focused on the multi-stage process of developing an application level domain

security sensor. The first stage is to determine what kind of data to collect. This decision depends

primarily on two factors, the security threat and application. The type of data collected is different

59

if the security threat is an insider than if the security threat is malicious code. Choosing what data

to collect also depends on the application for which sensors are designed. The chosen application

should belong to the subset of programs that are on the system. Depending on the threat, it may

even belong to the subset of applications that the particular user runs.

The next stage is to reverse engineer the application. The intended goal is to extract the memory

addresses of functions that will be detoured and critical data. It is important to emphasize that this

is a form of cooperative reverse engineering that should not be required in the case of proprietary

applications. Proprietary applications should either release the source code, guarantee security, or

provide third party developers the proper hooks to add security after deployment.

The third stage is to automate the data extraction. This is accomplished by coding a dynamic-link

library that can be injected into an application at runtime. Several constructs exist for extracting

the necessary data from the process at run time, such as functional detours and casting the memory

address of a critical data element into a pointer. In the event of an application update, code can

be added to search out the signatures of the memory addresses extracted in the reverse engineering

stage.

Finally, this chapter discussed several of the techniques that can be used to perform analysis

and active response. The discussions of these techniques are intentionally brief because the focus

of this thesis is on the sensor step of the three step process. Different methods of analysis and

response will be explored in future work. The next two chapters will detail the experimental results

of developing sensors and deploying them.

60

Chapter 5

Experimental Sensor: PuttySensor.dll

This chapter will discuss the implementation and results of the dynamic application level sensor

PuttySensor.dll. PuttySensor.dll is a dynamic link library that extracts user input data from the

target application. The collected data is then logged to a file. The type of attack this sensor could

potentially address is the insider threat. The user input data could be used to create a profile of

how the user interacts with the target program. After this profile has been created, analysis could

determine whether a user’s interaction with the application is within their normal usage patterns.

The first section will discuss the target application for the developed sensor.

5.1 Target Application

The target application for this sensor is Putty.exe. Putty.exe is an open source telnet and SSH client

for Microsoft Windows and Unix. The program is used to remotely login and control computers

across a network [50]. The application has many features that are controlled by a dialog window.

After the user has configured the session with their required options, they can connect to the remote

machine. At this point, a terminal window is opened and the configuration control window is closed.

The sensor developed in this chapter extracts only the users interaction with the configuration

window. Figure 5.1 shows a screenshot of the configuration window user interface of Putty.exe.

The left hand side of the window has a treeview control that displays different configuration pages,

and the right hand side has all of the configurations that fall into the selected page’s category.

61

Figure 5.1: The Putty.exe configuration window

62

5.2 Reverse Engineering Putty.exe

The second step of the three step process described in Chapter 2 is to reverse engineer the target

application. The Putty.exe application is a dialog window and makes many calls to Windows API

functions in user32.dll. Of all the functions called, GetDlgItem() and IsDlgButtonChecked() are

of particular interest. GetDlgItem() is called once for every user interface item to be displayed on

the page each time the user changes between pages, and IsDlgButtonChecked() is called every time

the user manipulates a checkbox or radio button. In order to extract the information necessary to

create a dynamic application level sensor, intermediate sensors need to be developed. These sensors

collect the input values passed to the functions.

The API documentation details the inputs and outputs of these two functions. Both GetDlgItem()

and IsDlgButtonChecked() take two parameters as input. The first parameter is an HWND pointer,

and the second parameter is the dialog item ID. This item ID is the targeted information for the

sensor.

Detours are applied to the two library functions, and the input parameters are extracted to

create the sensor data. In this example, the two target functions that will be detoured live within

the user32.dll library. This system library is loaded when the application is launched. Because

the target functions exist within a DLL themselves, the memory addresses for the target detour

functions need to be extracted dynamically. This is done by obtaining the base pointer of the library

within the virtual memory and calculating the effective address of the function to be detoured.

In order to calculate the effective address, the memory offset of the target function needs to be

extracted. This is accomplished by finding the base address for user32.dll in memory and the

address for the GetDlgItem() function in memory and subtracting the difference. Figure 5.2 shows

the IDA Pro screenshot of each of these memory addresses. The offset needed is calculated by

subtracting 0x77650000 from 0x77690BC5. The result is 0x40BC5. The following code segment

shows the dynamic effective address calculation using this offset to acquire the address of the

target function.

63

Figure 5.2: Screenshot of the user32.dll base address and GetDlgItem() function address

Code: Dynamic effective address calculation of target function

DWORD dllhandle = (DWORD)GetModuleHandle(“user32.dll”);
checkDlgButtonFunction = dllhandle + 0x40bc5;
DetourFunctionWithEmptyTrampoline((PBYTE)GetDlgItem Tramp,(PBYTE)checkDlgButtonFunction,
(PBYTE)GetDlgItem Detour);

This process is repeated for IsDlgButtonChecked(), with a resulting offset of 0x2c927. From this

an intermediate sensor is developed and injected into the application. The detours are applied

when InitializedSensor() is called, and the sensor’s detour function, GetDlgItem Detour(), in-

tercepts the GetDlgItem() function each time it is called. The input parameters are then harvested

and used to develop the final sensor.

The output of the final sensor is an event log of the users’s interaction with the application.

These events are determined based on the item IDs passed to the two API functions. The next

section will discuss how the item IDs of the user interface pieces are used by intermediate sensors

and eventually turned into the final event log sensor.

5.3 Implementation

PuttySensor.dll extracts the input events of users within the application Putty.exe. The sensor logs

the data to a file called PuttySensor.txt. In order to capture the user input events, intermediate

sensors are used to discover the item IDs of items on each page. These items IDs are used in two

64

ways in the final sensor.

First, GetDlgItem() is called for each user interface item when the page is changed. The in-

termediate sensor intercepts the function call with a detour and keeps a list of all of the item IDs

belonging to each page. Using these lists of IDs, hashes are computed for each page. The final

sensor implements the same detour and calculates a run time hash. The sensor then compares this

hash to the hash created with the intermediate sensor to determine which page the user selects.

When the determination is made, the event results are written to the log file.

Second, IsDlgButtonChecked() is called every time the user manipulates a radio button or a

check box. The input ID of the first call to IsDlgButtonChecked() is the ID of the newly selected

radio button or check box. The intermediate sensor is used to develop a list of user interface

elements and their IDs for each page. Using this information, the final sensor can query the results

from the intermediate sensor to determine which user interface piece is being activated. When the

determination is made, the event results are written to the log file. Figure 5.3 shows a popup menu

displaying the item ID for the user interface element, Telnet radio button, after it has been selected.

5.4 Results

The end result is a log file containing the input events of the application. The log file contains the

time of the event and the event message. Figure 5.4 is a screenshot of this log file after several

events have been captured.

The next step is to develop a tool that can take this log data and profile the user’s typical

behavior within this application in real time. The sensor could easily be modified to pass this data

directly to the analysis tool.

65

Figure 5.3: Popup box displaying the item id of the user interface element selected

66

Figure 5.4: Screenshot of the PuttySensor.txt log file produced by this sensor

67

5.5 Conclusions

This chapter discusses PuttySensor.dll, which is an application level security sensor that attaches

to Putty.exe and extracts data describing the user’s interaction with the application. The sensor

creates a time stamped event log of the input to the program. Putty.exe is an open source telnet

and SSH client for Microsoft Windows and Unix. It is used for remote access to computers across

the Internet [50]. The sensor this chapter describes tracks the input to the configuration dialog box

of Putty.exe. Figure 5.1 on page 62 shows the user interface of this configuration window.

Using detours applied to the API functions GetDlgItem() and IsDlgItemChecked() an interme-

diate sensor is designed to extract the user interface element ID passed to each of these functions.

First, the effective addresses of these functions are calculated using the base address of the user32.dll

module in memory and an offset. Then, the offset is determined by subtracting the address of the

target function from the base address. Next, the intermediate sensor is injected into the applica-

tion, and these functions are detoured. Finally, the user interface item IDs are collected from the

application’s detoured API calls. The item IDs gathered from calls to GetDlgItem() are used to

create a hash that identifies which options page has been selected. The item IDs collected from

calls to IsDlgItemChecked() help determine the user interface element that has been manipulated

on the current page.

Ultimately, the output of this sensor could potentially train an anomaly detection system to

combat the insider threat problem. This is a task that could be explored in future work. The next

chapter will show an application of dynamic sensors that targets the malicious code threat.

68

Chapter 6

Experimental Sensor:

FunctionTimer.dll

This chapter will discuss the implementation and results of the dynamic application level sensor

FunctionTimer.dll. FunctionTimer.dll is a dynamic-link library that extracts timing data on specific

functions within the targeted application. After timing data is collected, the results are logged to

a file. Additionally, manual analysis is performed on the log data. The attack threat this sensor

addresses is malicious code that modifies the functionality of the application. The hypothesis is

that the difference in timing results of the unmodified code and modified code will be statistically

noticeable. The first section will discuss the target application for the developed sensor.

6.1 Target Application

GuessNumber.exe is the targeted application, and it was developed for the purposes of this exper-

iment. This application is a simple number guessing game. It begins by prompting the user for

their name and then asks them to guess a number between 1 and 10. Afterwards, the application

generates a random number and compares it to the users guess. If the numbers match, the user

wins. If they do not match, the user loses, and the correct answer is displayed. This process is

looped until the user closes the application. GuessNumber.exe is unique because it is coded in such

a way that makes it vulnerable to a buffer overflow attack.

69

Figure 6.1: GuessNumber.exe prompting the user for their name

Figure 6.2: Results of a complete cycle of GuessNumber.exe

70

The following source code shows the targeted function that contains this vulnerability.

Code: Function Foo of GuessNumber.exe

void Foo(char *buf){
char buffer[10];
for (int i=0;i<10000;i++){}
strcpy(buffer, buf);

}

This function creates a static character array buffer of size 10 and performs an unsafe strcpy()

into that buffer. The source string is passed to the function as an argument. An extra loop exists

to extend the normal execution time for this function. Figure 6.1 and 6.2, on the previous page,

show the functionality of this game.

6.2 Reverse Engineering GuessNumber.exe

The GuessNumber.exe binary is reverse engineered in order to extract the memory address from the

function Foo(). This memory address is used to apply a functional detour that times the execution

of Foo(). GuessNumber.exe is simple enough that the location of Foo() was easily found by

searching the binary for the string “Pick a number 1 to 10.” This string is printed to the screen

after the targeted function is called. The following code segment is the assembly representation of

Foo().

Code: x86 Assembly Representation of Foo()

.text:0042D5A0 sub 42D5A0 // start of function

.text:0042D5A0 var 10 = dword ptr -10h // variable int i

.text:0042D5A0 var C = byte ptr -0Ch // variable buffer

.text:0042D5A0 arg 0 = dword ptr 8 // function arg char *buf

.text:0042D5A0

.text:0042D5A0 push ebp // preserve frame pointer

.text:0042D5A1 mov ebp, esp // mv stack ptr into frm ptr

.text:0042D5A3 sub esp, 50h // make room for stack frame

.text:0042D5A6 push ebx // push ebx to stack

.text:0042D5A7 push esi // push esi to stack

.text:0042D5A8 push edi // push edi for stack

.text:0042D5A9 mov [ebp+var 10], 0 // initialize int i to 0

.text:0042D5B0 jmp short loc 42D5BB // jump to loop init loop cmp

.text:0042D5B2 mov eax, [ebp+var 10] // put var i into eax

.text:0042D5B5 add eax, 1 // increment eax

.text:0042D5B8 mov [ebp+var 10], eax // put eax back into var i

71

.text:0042D5BB cmp [ebp+var 10], 2710h // compare i 10000d (2710h)

.text:0042D5C2 jge short loc 42D5C6 // if i >= 10000d jump out of loop

.text:0042D5C4 jmp short loc 42D5B2 // else continue loop

.text:0042D5C6 mov eax, [ebp+arg 0] // move char *buf into eax

.text:0042D5C9 push eax // push to stack for upcoming fnc call

.text:0042D5CA lea ecx, [ebp+var C] // load address of buffer into ecx

.text:0042D5CD push ecx // push to stack for upcoming fnc call

.text:0042D5CE call sub 42B703 // call to strcpy()

.text:0042D5D3 add esp, 8 // clean up stack after strcpy()

.text:0042D5D6 pop edi // restore edi from stack

.text:0042D5D7 pop esi // restore esi from stack

.text:0042D5D8 pop ebx // restore ebx from stack

.text:0042D5D9 mov esp, ebp // move frame ptr into stack ptr

.text:0042D5DB pop ebp // restore ebp from stack

.text:0042D5DC retn // function ends

This is indeed the target function, and the memory address of the function is 0x42D5A0. The

next section describes how this memory address is used to implement the sensor.

6.3 Implementation

The reverse engineering stage provided the necessary information to develop the sensor. When the

dynamic-link library is injected into the process, the InitializeSensor() function is called. This

function deploys a detour on the Foo() function of the application using the extracted memory

address, 0x42D5A0. The code for this detour is shown in the following code segment:

Code: Function detour added to 0x42D5A0

DetourFunctionWithEmptyTrampoline((PBYTE)cp tramp,(PBYTE)0x42D5A0,(PBYTE)cp detour);

When the Foo() function is called within the application, execution is redirected to the cp detour

() function. The detour function uses the x86 assembly instruction RDTSC to capture the number

of processor ticks since reset. Next, the detour function calls Foo(). To determine the number of

processor ticks for Foo(), the RDTSC instruction is called again after Foo() returns. Then the result

is subtracted from the initial call. At this point, the clock frequency can be used to determine

the execution time of the function with nanosecond scale precision. Should Foo() fail to return,

the PulseCall() function, which runs within the sensors thread, can act as a watchdog timer and

calculate the timing difference.

72

Advances in CPU architectures have diluted the accuracy of the RDTSC timing method. First,

in multi-core architectures, each core has its own time stamp counter (TSC) register. This is

overcome by the fact that the timing is executed within the injected sensor, which runs as a thread

on a particular core. Second, the method does not account for context switches, which can inflate

the timing of the function. This problem is overcome in the analysis stage by computing the average

timing of the Foo() function. Third, out of order execution can cause the RDTSC instruction to not

issue when expected. This can be solved by adding a serializing function like CPUID. Finally, many

laptops have power saving technologies that speed up or slow down the CPU frequency to conserve

the battery. When this occurs, the timing results will be off potentially skewing the sensor results.

The computer on which these experiments were run on does not have this power saving feature [51].

After timing results are calculated, the sensor logs the data for analysis. At this point the sensor

could be developed to automatically forward the data to the analysis center. However, the focus

of this thesis is on the dynamic application level sensors and not the analysis and response steps.

Future work will explore analysis and response in more detail. Additionally, the sensor implements

a watchdog timer that functions at the millisecond scale to determine if Foo() has failed to return

from execution. This is important considering one of the attacks described in the next section

prevents Foo() from returning.

6.4 Attack Vectors

This section details two attack vectors for the targeted function Foo(). The first attack vector is a

code tamper attack. The code of the targeted function is manipulated in such a way that modifies

the functionality, resulting in abnormal timings. The second attack vector is a buffer overflow

attack. The return address of the stack frame is overwritten resulting in the execution of shellcode

on the stack. In this case, Foo() does not return.

73

6.4.1 Code Tamper Attack

The first type of attack developed for GuessNumber.exe is a code tamper attack. The functionality

of the code is altered in memory at run time. There are several ways this could happen, such

as the injection and redirection of code execution or the actual modification of the existing code.

The attack developed for GuessNumber.exe modifies the existing code of the function. It changes

the number of loop iterations from 10000 to 30000. This is accomplished through an API call

to WriteProcessMemory(). This function call writes a buffer to a specified memory location in

a targeted process. In this case, the targeted process is the GuessNumber.exe process. Figure

6.3 shows the graph view of the assembly code before the modification, and Figure 6.4 shows the

assembly code after the modification.

6.4.2 Buffer Overflow Attack

Buffer overflow vulnerabilities are the result of an application reading or writing beyond the end

of an array. Attackers exploit these vulnerabilities to force the execution of malicious shellcode on

a remote system. There are several techniques to exploit a buffer overflow, such as arc injection,

pointer subterfuge, and heap smashing. However, the most common technique is the “stack smash-

ing” approach. This is when the overrun buffer writes into the stack frame of the current function

and replaces the return address with the address of their shellcode [37].

The function Foo() contains a “stack smashing” buffer overflow vulnerability. This is the result

of the small static buffer and the unsafe string copy function, strcpy(). Shellcode can be inserted

in place of the name to force a buffer overflow. The following is an example of shellcode that will

cause the buffer to overflow and overwrite the return function of the current stack frame.

Code: Hexadecimal representation of buffer overflow shellcode for function Foo()

“\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\xEB\xF0\xFC\xFE\x12”

Figures 6.5 and 6.6 show the stack before and after the shellcode has been pasted in for the name.

74

Figure 6.3: Assembly code of Foo() prior to the code tamper attack

75

Figure 6.4: Assembly code of Foo() after the code tamper attack

76

Figure 6.5: Stack before buffer overflow

Figure 6.6: Stack after buffer overflow

77

The ASCII representation of the shell code, which is shown in the above code segment, is pasted

into GuessNumber.exe when the user is prompted for their name. The shellcode begins executing

after the Foo() function returns. The code is returned to the new overwritten return address. A

breakpoint was inserted to allow line by line execution. The shellcode does nothing more than hang

execution in a loop on the stack. Figure 6.7 shows the assembly instruction sequence executing on

the stack.

6.5 Results

The sensor is injected into the GuessNumber.exe process and the timing data is accumulated. Next,

the attacks are executed and the sensor collects data through these events. This section will detail

the results of the dynamic application level sensor FunctionTimer.dll.

Figure 6.7: Shellcode executing on the stack

78

6.5.1 Results of Code Tamper Attack

The results of the code tamper attack supported the hypothesis. Prior to the code tamper attack,

the timing results were approximately 30,500 ns. After the code tamper attack, the timing results

jumped to approximately 90,500 ns. This can be seen in Table 6.1 on the next page.

The average normal time for this experiment is 30,534 ns with a standard deviation of 880 ns.

When the tamper attack is launched, the average time for the tamper timings is 90701 ns. This is

represents a z-score that is 68.39 standard deviations away. The hypothesis is that the difference

in timing results of the unmodified code and modified code is statistically noticeable. These results

indicated that this is indeed the case. Figure 6.8 shows the scatter plot of the timing results from

the tamper attack. This analysis was produced from the log files of the FunctionTimer.dll sensor.

While the analysis performed on the produced data set was done by hand, the eventual goal is to

perform automatic analysis in real time and use the results to actively respond to threats.

Figure 6.8: Scatter plot of the timing results of the tamper attack

79

Table 6.1: Observed Execution Times for 32 Runs with a Code Tamper Attack at Run 27
Run Time(ns) Observation

1 30674.26 Normal

2 30565.97 Normal

3 30481.74 Normal

4 30385.48 Normal

5 30538.90 Normal

6 30301.25 Normal

7 30307.27 Normal

8 30385.48 Normal

9 30454.67 Normal

10 30490.77 Normal

11 30379.46 Normal

12 30301.25 Normal

13 30499.79 Normal

14 30421.58 Normal

15 30295.23 Normal

16 30415.56 Normal

17 30301.25 Normal

18 30295.23 Normal

19 30620.12 Normal

20 30385.48 Normal

21 30385.48 Normal

22 30394.50 Normal

23 30064.47 Normal

24 30478.73 Normal

25 30400.52 Normal

26 30789.00 Normal

27 90744.31 Tamper Attack

28 90687.16 Tamper Attack

29 90774.39 Tamper Attack

30 90596.91 Tamper Attack

31 90750.33 Tamper Attack

32 90654.07 Tamper Attack

80

6.5.2 Results of Buffer Overflow Attack

The results of the buffer overflow attack were also as expected. The buffer overflow causes the

program to hang in a loop on the stack. As a result execution never returns from the function

Foo(). This causes the periodic check to see if the function has returned to fail. When this check

fails, the sensor calculates the time since the start of Foo() and updates the event log. The user is

also notified of the event with an alert. This alert can be seen in Figure 6.9. Finally, after the attack

has occurred, the application needs to be restarted because execution is stuck in the shellcode.

The timing results of normal execution and the timeout of the Foo() function can be seen in

Table 6.2. The results are as expected; an average normal execution time of 30,697 ns with a

standard deviation of 1237 ns. The z-score of the timed out buffer overflow attack represents a

z-score of 19821.59 standard deviations. Figure 6.10 shows the scatter plot of the execution time

versus run number.

Figure 6.9: The watchdog timer detects that Foo() never returns and alerts the user.

81

Table 6.2: Observed Execution Times for 32 Runs with a Buffer Overflow attack at Run 32
Run Time(ns) Observation

1 30593.04 Normal

2 30301.25 Normal

3 30490.77 Normal

4 30550.93 Normal

5 30391.50 Normal

6 30316.29 Normal

7 33258.28 Normal

8 30496.78 Normal

9 30295.23 Normal

10 30394.50 Normal

11 30400.52 Normal

12 30484.75 Normal

13 36871.08 Normal

14 30415.56 Normal

15 30475.72 Normal

16 30304.26 Normal

17 30292.23 Normal

18 30298.24 Normal

19 30391.50 Normal

20 30448.65 Normal

21 30406.54 Normal

22 30328.32 Normal

23 30568.98 Normal

24 30466.70 Normal

25 30295.23 Normal

26 30301.25 Normal

27 30292.23 Normal

28 30322.31 Normal

29 30298.24 Normal

30 30385.48 Normal

31 30457.68 Normal

32 24582366.57 Buffer Overflow Attack

82

Figure 6.10: Scatter plot of the timing results of the buffer overflow attack

6.6 Conclusions

This chapter discussed the implementation and results of the dynamic application level sensor

FunctionTimer.dll. This sensor collects timing data on the execution time of the target function.

In the case of FunctionTimer.dll, the target function is Foo(), which resides in GuessNumber.exe.

GuessNumber.exe is a guessing game application that was developed specifically for the purposes of

these experiments. The memory address of the function Foo() is extracted by reverse engineering

the binary. Using this memory address, a sensor is developed and deployed. This sensor uses the

TSC register to calculate the number of ticks since reboot before and after the Foo() function is

called. From this and the processor frequency, the timing of the function is calculated and recorded.

Additionally, a periodic timer checks to make sure the Foo() function has returned.

Two experiments tested they hypothesis that the difference in timing results of the unmodified

code and modified code will be statistically noticeable. The sensor is injected into to the application

at run time and normal timing data is collected. After a certain number of runs, two different

attacks are launched on the application. The first attack is a code tamper attack that modifies the

functionality of the Foo() function. This causes it to take three times longer to execute. The sensor

data verifies this, and the change point is easily identifiable. The resulting execution time has a

z-score of 68.39, which is statistically significant. The second attack is a buffer overflow attack that

83

overwrites the return pointer of the current stack frame, causing shellcode to execute on the stack.

As a result, Foo() never returns from execution, and the watchdog timer of the sensor captures this

event. The user is notified, and the time captured by the watchdog timer is logged. The execution

time of Foo() is theoretically infinity since it never finishes execution. However, the watchdog is

set in place to prevent this.

The work presented in this thesis focuses on the sensors and not the analysis or response. Some

of the future work in this area will be to automatically perform analysis on the collected data. The

FunctionTimer.dll sensor shows another the type of data that can be collected with an application

level security sensor.

84

Chapter 7

Summary and Conclusion

The work presented in this thesis introduced the concept of dynamic application level sensors

produced via reverse engineering and implemented via process injection. Dynamic application level

security sensors provide the opportunity to use a finer granularity of data to make informed decisions

about potential cyberthreats. Adding these new sensors to the existing defense in depth scheme

can further strengthen the overall security of cyberspace. First, this chapter will summarize the

existing defense techniques and examine where dynamic application level sensors fit in the overall

security design. Second, it will recap on the technologies required to develop and implement these

fine grain sensors. Third, it will review the results of the two examples, PuttySensor.dll and

FunctionTimer.dll. Fourth, it will discuss the ethical implications of this work, and finally it will

conclude with future work in the area.

7.1 Summary

Cyberspace is a large dynamic network of hardware, software, operating systems, data, and people.

The sophisticated complexity of this network makes protecting it an ambitious task. Cyberattacks

are growing exponentially in numbers. Along with this increase in the number of attacks is an

increase in the sophistication of the attacks. Attackers are constantly looking for new ways to com-

promise systems. The motives behind these attacks include revenge, sabotage, terrorism, money,

and political purposes.

85

Threats manifest at many different security domains throughout cyberspace. To combat these

threats, layered defenses, such as defense in depth security strategies have become the standard. The

combination of hardware and software security measures at the different levels of the cyberspace

domain has provided the best protection currently available. The network level offers firewalls,

switches, and network intrusion detection systems based on signatures and anomaly detection

algorithms. The host level offers protection via antivirus scanners, system integrity verifiers, and

other security measures that monitor activity on a given computer system. The common theme

between the network and host level security domains, is that they follow a generic three step process.

First, they collect data from sensors. Second, they process the data, and finally, they respond to any

potential threats. This three step process is lacking at the application level. Defenses at this level

focus on secure coding practices and patching vulnerable code. Unfortunately, this is not sufficient

to protect against the complex attacks common in cyberspace. The work presented in this thesis

targets application level security. It proposes adding the three step process at the application level

starting with sensors. The sensors are dynamically added to the application at run time using a

form of code injection.

There are several forms of code injection, such as SQL, XSS, and DLL methods. Of the forms

described in Chapter 3, dynamic-link library injection is unique, because it allows code to execute

within the virtual memory space of a targeted process. Execution within the virtual memory

space of a remote process grants the DLL access to run time application data that is not normally

accessible to other applications. There are many ways to implement DLL injection. Of these

methods, the two most common are Windows APIs and Windows hooks. Windows APIs work by

issuing the proper sequence of functions provided by the operating system. Windows hooks work

by hooking messages for local and remote processes. Detecting code injection partially depends

on the method of injection. Some forms of injection are easier to detect than others. Chapter

3 detailed different ways to detect code injection, but there are stills ways to avoid detection if

stealthy execution is a required feature of the injection.

86

Existing applications of dynamic-link library injection are malware, functionality additions, de-

bugging, and performance profiling. The Storm computer worm was an example of a piece of

malware that used a form of code injection similar to DLL injection to execute stealthily. MMORe-

lay is an example of DLL injection developed to add new functionality to an existing software

system. The work presented in this thesis introduces a new application of dynamic-link library

injection focused on cybersecurity. This new application injects security modules into applications

at run time to help protect them. In order to accomplish this, the sensors must be developed.

Developing dynamic application level sensors is a multi-stage process. The first stage is to

determine what data needs to be collected. This determination is dependant on the targeted

security threat and the application chosen to defend against. The next stage is to reverse engineer

the application to extract the memory addresses for target functions that can be detoured and

critical data that can be directly accessed. The reverse engineering process is a feedback cycle of

static and dynamic analysis that results in intermediate sensors that can assist in the next iteration

of dynamic analysis. The end result is the necessary memory addresses for the next stage, which

is to automate the data extraction.

Data extraction is accomplished by writing the actual sensor. The sensor implements any function

detours and applies any processing required to report the targeted data. At this stage, the logic

can be added to direct the output of the sensor to the analysis and response steps of the three step

process. This thesis does not focus on the analysis and response steps, however, future work will

likely explore these steps. This process was implemented on two sensors to show the kind of data

that can be extracted with dynamic application level sensors.

Chapter 5 introduced PuttySensor.dll, which is an application level sensor that targets the

insider threat. It collects user input data to the program Putty.exe, which is an open source

SSH and Telnet client for Windows and UNIX. The putty sensor detours GetDlgItem() and

IsDlgButtonChecked() in order to determine what the user is doing within the application. When-

ever a user changes pages or manipulates a user interface element, the sensor reports the action in

87

an event log. An anomaly detection system could train on the output of this sensor to profile the

normal behavior of the user within the target application. It could then respond to any deviations

of this profiled normal behavior.

Chapter 6 introduced the next sensor which was FunctionTimer.dll. This sensor collected timing

data on the execution of functions within an application. The hypothesis was that the timing

results of the unmodified code and modified code would be statistically noticeable. To test this

hypothesis, the application GuessNumber.exe was created. The program prompts the user for their

name and a number between 1 and 10. The program itself was coded in such a way to be vulnerable

to several types of attacks. The experiment launched two attacks on the program. The first attack

tampered with the logic of a timed function. The result was a timing that took three times longer

than normal to execute. This longer execution time represented a z-score of over 68 standard

deviations away. The second attack was a buffer overflow that smashed the return pointer of the

stack frame and forced the execution of shellcode on the stack. The result was the target timed

function never returned, triggering the watchdog timer the sensor implemented. The attacks were

noticeable through change points in the timing logs the sensor produced. There is much potential

future work in this field. The next section will detail several directions in which this work could go.

7.2 Future Work

The work presented in this thesis opens the door for many possibilities of additional work. First,

different forms of analysis and response need to be explored in an effort to make use of the powerful

fine-grain data dynamic application level sensors provide.

Second, many more sensors could be designed. This would allow for a robust defense at the

application level. Ideally, sensors would run within each process on the system. They would

monitor the health of the process and defend against threats both internal and external to the host

and particular application.

88

Third, a robust framework should be developed to facilitate the design of these sensors. This

framework should have two parts. The first part is the development center, which would provide

APIs for rapidly creating and testing sensors. It would also help automate the reverse engineering

process as much as possible. The second part is the deployment functionality of the framework. The

deployment functionality actually performs the DLL injection and keeps track of which sensors are

loaded in which applications and processes. It would allow system administrators control over the

sensors, analysis, and response. A large part of the framework should be a high quality visualization

capability that assists system administrators in understanding what the status of the system is at

any given time. This visualization capability would also have the necessary user interface controls

to launch or remove sensors to the system.

Finally, additional work could focus on new methods of stealthy execution. This is of particular

interest because targeting the insider threat means the system should be transparent to the user.

In general, a system such as the one proposed in this thesis would be invisible to the average

user. However, advanced users could still track down and disable the system. To prevent this, new

methods of stealthy executions could be explored in future work.

The goal of the reverse engineering stage is to extract memory locations for critical data elements

and functions that can be hooked. This section will focus on the reverse engineering process, and

detail the tools and methods used to extract the required data for the security sensor.

7.3 Ethical Implications of this Work

The work presented in this thesis has ethical implications that need to be considered. The preface

noted that the techniques described in this document could potentially be used to develop harmful

sensors. Is it right to develop a framework that facilitates code injection and application level data

mining, even if its intended use is to defend? Are the ethical implications of this same as the

invention of dynamite? Dynamite is extremely useful in applications, such as clearing rock for the

development of roads and the demolition of buildings. However, it can also be used to do harm.

89

Other ethical implications to consider involve privacy. For Example:

• If Person X owns a computer and Person Y uses it, is it right to develop a sensor to monitor

Person Y’s activity?

• What limits of privacy should Person Y expect?

• How does the relationship between Person X and Person Y effect the ethics?

• What if Person Y is a minor and Person X is their guardian?

• What if Person X is a public library providing free internet access?

• What if Person X is a company that wishes to monitor their employee?

• What obligation does Person X have to keep the information confidential? How confidential?

• Can another employee access the collected data if they are working on behalf of the employer?

• Should the employer monitor the actions of the employee in charge of monitoring other em-

ployees?

• Should Person X disclose to Person Y that they are being monitored?

• If so, how much detail should be disclosed about what is being monitored?

• The type of data that could potentially be collected through application level security sensors

is personally identifiable information, such as passwords, social security numbers, and credit

card numbers. How should this data be handled?

These are just a few of the ethical questions that should be considered when developing and

implementing dynamic application level security sensors. Ultimately, there are no definitive answers

to these questions. The answers depend on the situation and the individuals involved. There are

many code of ethics that can be applied to each of these scenarios, but in the end the answer

depends on the interpretation.

90

7.4 Conclusion

The need for stronger application level security domain defenses is apparent. Secure code practices

and vulnerability patching are not sufficient. Attackers are regularly probing enterprise networks

looking for vulnerabilities. If they are successful, the results can be costly. The work presented in

this theses proposes the use of dynamic-link library injection and reverse engineering to dynamically

add security sensors to applications at run time. These sensors further fortify the defense-in-depth

security strategy. They can be used to access a previously untapped source of fine-grain data and

should be incorporated into normal operations of system administrators. It is not the absolute

solution to the rising cyber security problems, but it is a previously missing piece of the solution.

91

Bibliography

92

[1] M. Alvarez “Online Black Market Worth $267 Million”, Atelier BNP Paribas Group

November 26, 2008 [Online], http://www.atelier-us.com/e-business-and-it/article/online-

black-market-worth-267-million

[2] Blaster, Accessed: February 8, 2010 [Online] http://en.wikipedia.org/wiki/Blaster (com

puter worm)

[3] Bro, Accessed: February 6, 2010 [Online] http://bro-ids.org

[4] G. W. Bush, “The National Strategy to Secure Cyberspace”, The White House, February

2003.

[5] Cheat Engine, Hex-Rays, Accessed: February 16, 2010 [Online], http://www.cheatengine

.org/.

[6] Daphne, “How Bypass firewall with Process Injection”, January 3, 2009 [Online],

http://www.abysssec.com/blog/2009/01/how-bypass-firewall-with-process-injection/.

[7] Darawk, “Dll Injection Tutorial”, The Edge of Nowhere Mar 18, 2006 [Online Forum],

http://www.edgeofnowhere.cc/viewtopic.php?p=2483118.

[8] S. Fewer, “Reflective DLL Injection”, Harmony Security, Version 1.0 October 31, 2008.

[9] E. A. Fischer, “Creating a National Framework for Cybersecurity: An Analysis of Issues

and Options”, CRS Report for Congress, February 22, 2005.

[10] eEye Digital Security, August 11, 2003 [Online], http://research.eeye.com/html/advisories

/published/AL20030811.html

[11] S. Floyd and V. Paxson, “Difficulties in Simulating the Internet”, IEEE/ACM Transac-

tions on Networking, Vol.9, No.4, pp. 392-403, February 2001.

[12] F-Secure Labs, “F-Secure IT Security Threat Summary for the Second Half of 2008”,

2008 Q4 [Online], http://www.f-secure.com/en EMEA/security/security-lab/latest-

threats/security-threat-summaries/2008-4.html.

93

[13] A. Greenberg, “The iPhone’s First Worm”, November 8, 2009 [Online], http://www.forbes

.com/2009/11/08/iphone-virus-attack-technology-security-rickrolling-cybersecurity.html.

[14] R. Graham, “FAQ: Network Intrusion Detection Systems”, Version 0.8.3, March 21, 2000.

[15] G. Hunt and D. Brubacher “Detours: Binary Interception of Win32 Functions”, Proceed-

ings of the 3rd USENIX Windows NT Symposium, July 1999.

[16] Iczelion, “Tutorial 24: Windows Hooks”, Accessed: February 13, 2010 [Online], http://

win32assembly.online.fr/tut24.html.

[17] IDA Pro, “The IDA Pro Disassembler and Debugger”, Hex-Rays Accessed: February 16,

2010 [Online], http://www.hex-rays.com/idapro/.

[18] INFOSEC, “Hard Problem List”, INFOSEC Research Council, November 2005.

[19] Internet Security Systems, “Network-vs. Host-based Intrusion Detection, A Guide to

Intrusion Detection Technology”, October 2, 1998.

[20] Interagency Working Group on Cyber Security and Information Assurance, “Federal Plan

for Cyber Security and Information Assurance Research and Development”, National

Science and TEchnology Councill, April 2006.

[21] Kaspersky Labs, “Kaspersky Lab forecasts ten-fold increase in new malware for 2008”,

April 9, 2009 [Online], http://www.kaspersky.com/news?id=207575629l.

[22] M. Keeney, E. Kowalski, D. Cappelli, A. Moore, T. Shimeall, S. Rogers, “Insider Threat

Study: Computer System Sabotage in Critical Infrastructure Sensors”, National Threat

Assessment Center and CERT Program Software Engineering Institute, May 2005.

[23] G. Keizer, “Windows Market Share Slide Resumes” Computer World Jan-

uary 3, 2010 [Online], http://www.computerworld.com/s/article/9142978/Windows

market share slide resumes.

[24] J. E. Kerivan, “Self-Defending Security Software”, MILCOM 2005, October 2005.

94

[25] R. Kuster, ‘Three Ways to Inject Your Code into Another Process”, The Code Project

July 25, 2003 [Online], http://www.codeproject.com/KB/threads/winspy.aspx.

[26] J. R. Langevin, M. T. McCaul, S. Charney, H. Raduege, and J. A. Lewis, “Securing

Cyberspace for the 44th Presidency”, Report of the CSIS Commision on Cybersecurity for

the 44th Presidency, December 2008.

[27] T. Lanowitz, “Now Is the Time for Security at the Application Level”, Gartner, December

1, 2005.

[28] D. Marcus, “Malware Is Their Business...and Business is Good!”, Ad-

vert Labs McAfee July 22, 2009 [Online], http://www.avertlabs.com/research

/blog/index.php/2009/07/22/malware-is-their-businessand-business-is-good/.

[29] National Security Agency, “Defense in Depth: A practical strategy for achieving Infor-

mation Assurance in today’s highly networked environments.”, Information Assurance

Solutions Group,

[30] Net-Security, “Trojan attacks antivirus software”, June 27, 2006 [Online], http://www.net-

security.org/malware news.php?id=655.

[31] D. Newman, J. Snyder, and R. Thayer, “Crying wolf: False alamrs hide attacks”,

Network World, June 24, 2002 [Online], http://www.networkworld.com/techinsider

/2002/0624security1.html.

[32] M. G. Nystrom, “SQL Injection Defenses”, O’Reiliy Media, Inc., March 26, 2007

[33] OSSEC, Accessed: February 10, 2010 [Online] http://www.ossec.net/

[34] PandaLabs, “PandaLabs’ 2009 Predictions: Malware Will Increase In 2009”, December

21, 2008 [Online], http://www.prweb.com/releases/2008/12/prweb1772314.html.

[35] Patch Tuesday, Accessed: February 11, 2010 [Online] http://en.wikipedia.org/wiki/Patch

Tuesday

95

[36] T. Pietraszek, and C. V. Berghe, “Defending against Injection Attacks through Context-

Sensitive String Evaluation”, Proceedings of Recent Advances in Intrusion Detection

(RAID2005), September 2005.

[37] J. Pincus and B. Baker, “Beyond Stack Smashing: Recent Advances in Exploiting Buffer

Overruns”, IEEE Security and Privacy, pages 20-27, July 2004.

[38] D. Quist, “Storm Worm Process Injection from the Windows Kernel”, Offensive Comput-

ing), March 9, 2008.

[39] J. R. Raphael, “Twitter Hack: How It Happened and What’s Beign Done”,

PCWorld Jan 5, 2009 [Online], http://www.pcworld.com/article/156359/twitter

hack how it happened and whats being done.html.

[40] Rocky Pulley, “Extending Task Manager with DLL Injection”, The Code Project May

19, 2005 [Online], http://www.codeproject.com/KB/threads/taskex.aspx.

[41] SCADA, Accessed: February 8, 2010 [Online] http://en.wikipedia.org/wiki/SCADA

[42] Skape and J. Turkulainen, “Remote Library Injection”, nologin, April 6, 2004.

[43] B. Schneier, “Gathering ’Storm’ Superworm Poses Grave Threat to PC Nets”,

Wired October 4, 2007 [Online], http://www.wired.com/politics/security/commentary/

securitymatters/2007/10/securitymatters 1004.

[44] R. Seacord, and M. Sebor, “Top 10 Secure Coding Practices”, CERT, February 13, 2010.

[45] E. Skoudis, “Your desktop antivirus product may be leaving you wide open to at-

tack”, SearchSecurity June 1, 2004 [Online], http://searchsecurity.techtarget.com/tip/

0,289483,sid14 gci967559 mem1,00.html?ShortReg=1&mboxConv=searchSecurity Reg

Activate Submit&&ShortReg=1&mboxConv=searchSecurity RegActivate Submit&.

[46] Snort, Accessed: February 6, 2010 [Online] http://www.snort.org

[47] Sourcefire, Inc, “SNORT Users Manual 2.8.5” The Snort Project October 22, 2009

96

[48] SQL Injection, Accessed: February 11, 2010 [Online] http://en.wikipedia.org/wiki/

SQL injection

[49] Storm Worm, Accessed: February 10, 2010 [Online] http://en.wikipedia.org/wiki/

Storm Worm

[50] S. Tatham, “Putty: A Free Telnet/SSH Client” Accessed: February 28, 2010 [Online]

http://www.putty.nl/

[51] Time Stamp Counter Accessed: February 30, 2010 [Online] http://en.wikipedia.org/wiki

/Time Stamp Counter

[52] D. Turner, T. Mack, M. K. Low, M. Fossl, J. Blackbird, D. McKinney, E. Johnson, S.

Entwisle, and C. Wuesst, “Symantec Internet Security Threat Report: Trends for July-

December 07”, Symantec, Volume XIII, April 2008.

[53] A. Wiegenstein, M. Schumacher, X. Jia, and F. Weidemann, “The Cross Site Scripting

Threat”, Virtual Forge, Version 1.2, May 10, 2007.

97

Appendix

98

Appendix A

Screenshots of Reverse Engineering
Tools

This section displays the screenshots of several of the reverse engineering tools described in this
thesis.

99

Figure A.1: Screenshot of the disassembler, IDA Pro

100

Figure A.2: Screenshot of the memory editor, Winhack 2.0

101

Figure A.3: Screenshot of memory editor and disassembler, Cheat Engine 5.5

102

Figure A.4: Screenshot of the jump calculator, JumpCalc

103

Figure A.5: Screenshot of the compiler, Visual Studio 2008

104

Vita

Christopher Thomas Rathgeb was born in Lancaster, CA on 13 March 1985. He graduated from

Farragut High School in 2002 where he went on to the University of Tennessee in Knoxville, TN. He

recieved his Bachelor of Science in Computer Engineering in August 2007. Shortly after graduating

with his Bachelor’s degree he started his own software company, Zippz Software, LLC. His company

focuses on game solutions for personal computers and mobile devices. In August 2008, he returned

to UTK where he is currently pursuing his Masters of Science degree in Computer Engineering.

He intends to continue his education towards a Ph.D. Christopher’s interests include video games,

reverse engineering, mobile devices, and computer security.

105

