
The Design of a Trustworthy Voting System
Nathanael Paul and Andrew S. Tanenbaum

Vrije Universiteit, Amsterdam, The Netherlands
nate@few.vu.nl, ast@cs.vu.nl

Abstract – After the voting debacle in the Florida Presidential
election of 2000 with its now-fabled hanging chads and
pregnant chads, many voting jurisdictions turned to electronic
voting machines. This transition has had at least as many
problems as punch-card systems and added the additional one
of making recounts impossible. As a result, many
jurisdictions have gone back to paper ballots in despair. We
believe that electronic voting can have many benefits
including accessibility and usability but requires regarding
voting as a system of which the voting machine is only a
(small) part. In this paper we describe all the components of
an electronic voting system that is practical and difficult to
tamper with. We emphasize the importance of systems
aspects, defense in depth, and being paranoiac.

1. Introduction
 Seven years ago, the Help America Vote Act (HAVA)
was passed to prevent a repetition of the 2000 Florida Presi-
dential election. With HAVA’s funding, states replaced their
punch card voting systems and lever voting machines with
new electronic voting machines. These new machines were
adopted to enhance election integrity by producing an
accurate tally while supposedly protecting the votes from
being maliciously changed, but the machines are unfortun-
ately still plagued with a multitude of problems [12]. In many
cases voting machine errors are not auditable, especially
when there is no voter-verifiable paper audit trail (VVPAT).
In addition to the typical irregularities and unexplainable
errors [11, 43], many of these machines have been shown to
be rife with security problems [2, 5, 13, 16, 24, 25, 36]. This
stream of problems is eroding voters’ faith in voting systems,
and election integrity is in jeopardy.
 In the past, voting systems were used for a single purpose:
determining who got the most votes. As new voting systems
have been introduced, designers have added new and pre-
viously nonexistent features such as allowing voters to verify
their own votes and also the final tally. However, straightfor-
ward ways that allow a voter to verify how he voted also al-
lows him to sell his vote and prove it to a buyer, so recent
electronic voting research allows verification but prevents
vote selling (and its cousin, voter coercion, which is the same
thing except the voter is an unwilling participant and does not
get paid) [3, 6]. While verification and resistance to vote sell-
ing are desirable, their inclusion in proposals has led to com-
plex designs that few legislators or voters can understand.
While many of the solutions implementing these features are
elegant, the features themselves have little to do with election
integrity (e.g., a recently deceased registered voter’s vote can

still be cast). In our view, maintaining the integrity of the
election is paramount and features achieving other properties
are secondary.
 Our goal is to design an electronic voting system that re-
stores voter confidence through its simplicity and security.
The overall design is different than most voting systems as
we focus on designing an entire electronic voting system
from beginning to end. Although other paper-based systems
have recently been introduced [7, 8, 14, 35], these schemes
are outside the scope of this paper because of their paper-
based design. Our motivation is that a well-designed elec-
tronic voting system has several benefits including improved
accessibility such as audio for the blind, cheaper and faster
reporting of the tentative vote tally, and more flexibility in
displaying custom ballots (e.g., ballots in multiple languages,
a larger font for the elderly, prevention of overvotes, and
feedback on undervotes).
 In addition to these benefits, complexity remains as a
challenge to a voting system’s acceptance. Voters and legis-
lators who do not understand a complex voting system will
not accept it. Not only is a simpler system more likely to be
understood and accepted, but it should be more robust. Un-
like the people running other complex systems (like air-
planes), the people running a voting system may want it to
fail (i.e., be able to secretly modify the results) for partisan
reasons. Because of the challenge of building a dependable
electronic voting machine that is resistant to failure (from
attack or error), the voting machines must not be able to un-
detectably alter election integrity. This can be achieved by
having the machines print voter-verifiable paper ballots and
paper receipts to ensure election integrity is independent of
the voting machine’s operation [37].
Contributions. We present a transparent voting system from
the very beginning of an election to the final tally, specifying
exactly how a Trusted Platform Module (TPM) is used,
presenting a scheme that enhances registration integrity, and
introducing a design that prioritizes election integrity (An earlier
introductory version of this work is also available [32]). We
have developed a nine-step voting system that takes place from
an election’s inception to its final conclusion (Section 3). Where
possible, we have used standard cryptographic primitives and a
TPM throughout the design. While others mention using trusted
hardware [10, 21, 39], we specify the TPM’s use in detail and
take advantage of its existing PKI infrastructure (Section 3).
Because of new concern over registration integrity [31, 33, 42],
we have also added a new component that better ties registration
into the act of voting (Section 3, Step 2). Our verification
process is different from most current voting systems as a voter

2

can easily check if, and how, his or her own vote was counted
(See Section 3, Step 9).

2. Assumptions
 We make four assumptions: (1) each voting machine has a
TPM and a mechanism to perform run-time attestation
(current voting machines do not support this); (2) advance
voter registration is required (making it unsuitable for some
states); (3) voters can use and write down a password
established at registration time to be used on election day;
and (4) human-readable receipts that plainly show the voters’
choices can be printed by the voting machines.
 TPMs are attractive for use in voting machines mainly for
their hardware protection of cryptographic keys. This work is
among the first to explicitly detail how a TPM should be used
in an election – specifically in how to handle keys and for
software attestation. We do not solve the key management
problem, but we offer an approach to manage voting system
keys using the TPM’s established PKI. In addition to key
management, we use the TPM to attest different software
used throughout our voting system. By using open source
software, and allowing voters to verify that the published
open source software is running at the time they vote, people
will have more faith that the election is being run honestly
[17]. People are more likely to trust a voting system that is
more transparent and allows source code inspection.
 If a voter, poll worker, or other third party chooses to
attest the voting machine software, successful attestation tells
him that it is likely that the machine is running that software
and the machine is not recording private information (We
assume that compromising the machine’s hardware on which
attestation depends is a nontrivial problem). Due to the
possibility of hardware compromise, we use paper ballots
with paper receipts, and this prevents a machine from
undetectably altering a vote as long as the voter checks the
receipt. If there is a discrepancy between the electronic and
paper record, the paper is the final and trusted result.
 We additionally assume that voter registration is required.
This rules out using this type of design in a state where ad-
vance registration is not required, but states can change legis-
lation to use this system. Recently, the media have given
much attention to registration integrity, and many states have
had problems in maintaining their registration databases [42].
In 1997, Florida uncovered a corrupt Miami Mayoral elec-
tion, and they experienced registration problems when they
purged their voter database to stop double voting or voting by
the dead [29]. Recent problems with the voter database in
New Mexico has also cast light on this problem [9]. Our sys-
tem uses an append-only voter registration database that pro-
vides a clear record of all database changes. While using an
append-only database is not novel, this is one of the first vot-
ing systems to integrate a registration integrity solution into
its design.

 To enforce registration integrity, part of the registration
process requires the voter to create (and optionally write
down) a password. Requiring a password is similar to other
voting systems that require passcodes for the voters [18]. In
our system, a password is required in order to vote (a fail-safe
is provided), but this is the only additional burden that most
voters will experience. The voter can ignore other slightly
more complicated parts of our voting system (e.g., interaction
with a TPM via attestation), and this simple password
protects votes from being stolen at the precinct.
 Recent cryptographic voting research has attempted to
solve the problem of vote selling while also providing
auditability through receipt verification. Many of the current
electronic voting systems do not allow verification (e.g.,
currently deployed ES&S, Diebold, etc.), and using these
systems for an election has proven disastrous [12, 26, 40].
Without the ability of producing a reliable audit, many
question the election outcome. Due to these problems in
auditability, our system does not equally value vote selling
resistance and auditability. The main priorities are election
integrity and having voters understand the system.
 The lack of auditability has decreased voter confidence in
current election systems [4], and many voters are turning to
absentee ballots. In just four years, early voting has increased
to approximately 30% of all votes, an increase of 10% over
the 2004 presidential election [28]. Of these early votes, the
available 2008 election data clearly shows that mail-in votes
are a significant percentage of all votes cast. With few
reported problems of vote selling and so many problems of
auditability, we emphasize auditability over vote selling by
using human-readable ballots and receipts.
 In addition to auditability, human-readable ballots and
receipts are essential for building voter trust. If voters and
politicians do not understand the system, then they will not
have confidence in the system, and recounts will become less
meaningful. Our idea of using human-readable receipts is not
new [34]. In fact, most believe that introducing the possibility
of vote selling makes the voting problem trivial, but it is not.
Making a trustworthy electronic voting system (trusted by
both politicians and voters) that is both reliable and auditable
is challenging. This paper is about the design of such a
system.

3. Outline of the Proposed Voting System
 Our voting system consists of nine steps, listed below,
which take place in sequence during a period that may take
up to a year after the election is called or the process started.
In this paper, we will use the U.S. names for the officials
involved, but analogous ones exist in other democracies.

1. Precinct master key generation and distribution.
2. Voter registration.
3. Proof of registration mailed to the voters.
4. Voting machines are prepared.

3

5. Key assembly at each precinct.
6. Voters show up and check in.
7. Voters cast their votes.
8. Tabulating the votes.
9. Publishing the result.

Each of these steps has some subtle points and potential for
malfeasance or fraud. Some of these steps rely on a Trusted
Platform Module (TPM), and we now outline the TPM
functionality needed.

Using Trusted Platform Modules for Attestation and Key
Management. Our goal is to use an open design in our system
to engender trust. We use open-source voting software (currently
under implementation), publish it on a website and allow
verification of that software. Getting states to use open-source
software is a political and legal issue. The technical challenge is
to allow voters and others to verify key properties about a
machine’s configuration immediately prior to using it for voting,
a process called attestation.
 Our attestation assumptions are:

 1. The voting machine hardware operates correctly

and has not been compromised.
 2. The private key of the TPM has not been leaked.
 3. All of the software that can potentially execute during

the voting process is included in the TPM
measurement (described below).

 If the assumptions hold true, then attestation shows the
machine is running the published open-source software and a
successful machine or key compromise is made more dif-
ficult (assuming that compromising the TPM is a nontrivial
problem). The possibility of successful verification under
violated assumptions still exists, and we must also ensure that
the machine cannot undetectably affect the election outcome
(although violations will hurt other voting system properties
including privacy and robustness). To ensure this property,
our voting system uses human-verifiable paper ballots and

human-verifiable paper receipts that can easily be checked
after casting a vote.
 In our scheme, software on the voting machine is verified
by computing its hash and then comparing it to the published
hash of the open-source code. To perform attestation, we use
a new instruction in x86 chips and a hardware device called a
Trusted Platform Module (TPM) that is already part of many
modern PCs. Although our design uses x86 chips,
specifically AMD x86 chips, Intel has similar functionality in
newer chips that could be used [19].
 In AMD processors that support TPM version 1.2 chips,
there is an x86 instruction called skinit that cryptographically
hashes the contents of 64-KB of memory [1]. This instruction
disables paging and interrupts, disables DMA to the 64-KB
memory region, verifies that all cores are disabled but the one
running skinit, runs a hash on the 64-KB of memory, stores
the hash in a specific TPM register, and then executes the
code stored in the 64-KB of memory. Later, a challenger can
ask the operating system for a cryptographically signed copy
of the TPM register containing the hash of the 64-KB code. A
certificate for the corresponding public key can be provided
so anyone can verify the hash of the code. Since only the
TPM has the private key, if the signed hash of the 64-KB
memory is correct, the 64-KB program, which we will call
the checker, must have been correct.
 We use the checker to verify the entire voting machine
software. The checker hashes all of memory (including the
operating system), any data that could affect the machine's
operation (e.g., ACPI tables and the BIOS system manage-
ment code [22]), plus the main BIOS, CD-ROM BIOS, and
any other BIOSes present. It also keeps interrupts and DMA
disabled, so that the attested code never loses control. Once
the code is verified, it always remains valid and in control
(the machine is not on any network). Once you can be sure
that the running software is identical to the published
software, the rest is manageable.
 In four different parts of our voting system design, we use
the TPM to attest that the checker is correct. If the checker is
correct and it produces a valid measurement of the rest of the

Send Nonce

Sign (PCR 17, PCR r, Nonce)
Voter

Machine with TPM

PCR 17 =
Hash(code)

Hash(code)

2a

Execute

code

0

0x9020000

…

64 KB of code
measures
machine’s

software:
PCR r =
Hash(software)

3

• Disable DMA
• Turn off Interrupts

• Execute on one core only
• Ignore breakpointsinvoke skinit

1

s
k
in
it
e
x
e
c
u
te
s

S
te
p
s
 2
b
 a
n
d
 2
c

PDA

Step 1: Begin attestation by sending nonce.
Step 2a: Invoke skinit for atomic execution.
Step 2b:Measure (attest) the hashing code into PCR 17.
Step 2c: Execute the code to checksum the machine’s software and store in PCR r.
Step 3: Send the signed result of the 64 KB code (in PCR 17), the nonce, and the machine’s software checksum (PCR r).

2b

2c

Fig. 1. Code verification using skinit. Steps 2b and 2c are executed atomically by the skinit instruction.

4

voting machine software, then we can conclude that the
machine is running the published software under our previous
assumptions. If attestation fails, then a different device
should be used to make sure that the failure is not with the
device issuing the attestation challenge.
 To begin attestation, the algorithm accepts a random value
(a nonce) as input as shown in Fig. 1 (Step 1). It then disables
interrupts and DMA to the memory containing the checker
just before it executes skinit (Step 2a), computes and stores
a hash of the checker program in TPM Platform Configu-
ration Register (PCR) 17 (Step 2b), and then executes the
checker. Before the checker exits, it writes its result (the hash
of all of memory, code, and relevant data) into a different
PCR register, r (Step 2c). After skinit has finished, the
machine returns the TPM signature of {PCR r, PCR 17,
nonce} (Step 3).
 From using the TPM to store keys and to help with attes-
tation, the TPM is now a primary target for attack. While the
keys reside in a TPM, the manufacturer of the hardware
could act maliciously. Even without malicious intent, buggy
hardware may yield to compromise. Although we can have
independent authorities check the hardware for specification
conformance, an examiner may miss a bug or vulnerability.
Due to the possibility of bugs, no solution should place all of
its trust in the hardware. We provide voter-verifiable receipts
and voter-verifiable ballots to protect against both malicious
and non-malicious hardware issues and use the electronic
count for quick results. Any discrepancies of count are re-
solved in favor of the paper ballots.

Step 1: Precinct Master Key Generation and Distribution.
Like other voting schemes, multiple keys are needed in the
election. Computational load is not an issue (a voting
machine can easily handle 600 voters in 15 hours), so public-
key cryptography (e.g., RSA) will be used due to its simpler
key management.
 We use three keys to encrypt and sign voting data.

Keypair 1. Encrypts/Decrypts files on voting and poll worker
 machines (per precinct)
Keypair 2. Ballot-signing keypair (per voter)
Keypair 3. Software attestation signing keypair (per
 attestation)

A single key pair (keypair 1) is needed per precinct (typically
a school or firehouse with perhaps a dozen identical voting
machines) to lock/unlock files on the voting machines and
also on the poll workers' machines. The encryption of the
relevant election files on all the precinct machines ensures
their data confidentiality up to the start of the election. If this
private key is compromised, the voter authentication tokens
are in jeopardy (the password hash, see below).
 For the other two keys, we can use each machine's TPM to
generate new keys for each voter. Each ballot is signed by a

unique. freshly TPM-generated key (keypair 2). Another
TPM-generated signing key is generated for each voter-
initiated request to attest the software (keypair 3). Both
signing keys are signed with a freshly generated TPM key,
called a TPM attestation identity key (AIK), that shows that
the TPM is managing the private keys in keypair 2 and
keypair 3; we use the machine's single endorsement key (the
most trusted key in the TPM) to sign each TPM attestation
identity key to show that it is a valid AIK. Each AIK and
single endorsement key (EK) never leave the TPM and are
not part of the three listed keypairs.
 The EK is the foundation of trust in a TPM. For each
machine’s EK, a certificate is provided to show its authen-
ticity. In addition to the EK certificate, a platform certificate
(signed by an independent third party) can be used to show
the machine and TPM’s conformance to specifications. Using
the EK and AIK, the group can then verify the software of
the machine before using it to generate keys.
 Individuals can inspect a machine’s endorsement key
(EK) certificate (from the TPM manufacturer, or alterna-
tively, regenerated at this event) to verify a machine has a
legitimate TPM. An EK can be issued to the TPM in one of
two ways: by generating the EK inside the TPM or injecting
the key from outside of the TPM. We advocate the creation
on the inside to take away the possibility that someone could
get the key before it is injected. Thus, in order to compromise
the EK, collusion with the vendor or a compromise of the
trusted hardware is needed. This assumes that people trust the
certificate authorities and certification processes, and reliable
certification processes are in place.
 The TPM-created keys do not need distribution (keypair 2
and keypair 3), but the keys that are used to decrypt the data
on the voting and poll worker machines (keypair 1) do need
distribution, because the decryption key will be distributed
later. For California’s approximately 25,000 precincts,
25,000 key pairs must be pregenerated, stored, and distrib-
uted. We are distributing a keypair per precinct (not per
machine) and taking advantage of the TPM’s already
established PKI for signing. Other alternatives include having
one key per county or perhaps one key per state. We felt that
having one key per precinct presented the best balance
between key management and the impact of a key comprom-
ise. At worst, a precinct key’s compromise will only affect
the voters for that specific precinct.
 These 25,000 precinct keys are generated as follows. The
Secretary of State chooses a particular brand and model of
computer to use (e.g., by competitive bidding) that supports a
TPM chip. On a designated day months before the election,
he or she invites all the political parties and the media to a
public key generation event. Each party may send one party
officer and one technical expert chosen by the party.
 After attestation by all the technical experts present, the
precinct keys (one pair per precinct) can be generated outside
of the TPM by the now-verified trusted software. The new

5

public keys are signed and stored on a notebook computer.
Because the machine’s integrity has just been checked, the
keys are trusted. The private keys are split using any well-
vetted secret-sharing scheme. A fault tolerant scheme will
likely be needed in the case of someone losing her or her key
part, but such schemes are well known.
 Each part of each key’s secret is written onto some tangi-
ble medium such as a contactful smart card (so there are no
radio signals to intercept). Smart card reader/writers are
available with RS-232C serial line interfaces, which have ex-
tremely simple device drivers (unlike USB drivers, which are
much more complex) enabling easier code verification. The
PC can have a PCI board with a dozen serial lines so many
smart cards can be written in parallel. If need be, multiple
PCs can be used in a similar way so all the smart cards can be
produced in one day, while the political parties’ technical ex-
perts watch the PCs and each other like hawks.
 For the moment, assume each private key is divided into
just two parts, A and B. When all the smart cards for a
particular county have been finished, the A parts are put into
a briefcase and locked and handed to the county’s registrar of
voters and taken back to his county. The B parts are put in
another locked briefcase and given to the county sheriff and
taken back to the county separately. They are locked in sepa-
rate safes in different buildings until the election. For extreme
paranoia, the keys could be split into, say, four parts each,
with the two leading political parties in each county each
getting pieces. The key cannot be assembled before election
day since the various parts are being held by independent
(and potentially hostile) parties. This scheme tacitly assumes
that no part of any key is lost during this process, and at least
one private key holder does not collude. However, other
types of (fault-tolerant) threshold schemes could be used in
practice.

Step 2: Voter Registration. Once all the keys have been
distributed, voter registration can begin (Fig. 2 shows a voter
registration record). If the keys are reused, then the voter does
not have to re-register. To register, a voter goes to the county
office with the necessary identification as required by state law
(e.g., proof of residence). As each voter registers, a record is
created for that voter in an append-only file.

 To protect against attacks by dishonest poll workers, we add a
voter-generated password needed to vote. Since the voter may
not trust the county officials with the password, he may bring a
device (e.g., a PDA, laptop, or cell phone) with the password
preloaded on it. Voters lacking their own device can use the
county’s computer to enter their password, but then they have to
trust the county not to steal it. The voter will use this device to
send his hashed password (not the plaintext password) to the
registrar’s computer.
 Some voters will pick weak passwords leading to easy
offline brute-force attacks. If we use salt values as tra-

ditionally done to defend against password guessing, then
this does not help with someone that has access to the
password database and all the salt values. Instead, we can use
the precinct public key to encrypt the password hash with a
random value rather than just storing the hash as is normally
done. The password hash will not be needed until election
day, and the precinct private key will not be ready
for decryption until then. Fortunately, this extra security does
not add any complexity for the voter. He or she will continue
to use his device to enter his password. The difference is that
the device then sends Ek (hash(password) || confounder),
where k is the precinct public key, || is concatenation, and the
confounder is a random value that is solely to prevent
guessing [15]. The encrypted password remains noninvertible
until the secret-shared private precinct key is reassembled on
election day.
 In addition to these steps, and for defense in depth, the
registrar’s computer generates a secret for voter i, Si and
breaks it into two parts, Si1 and Si2 where Si = Si1 || Si2 (where
|| means concatenation or XOR). It encrypts Si1 and Si2 with a
county-generated public key and stores hash(Si1||Si2). Each
of these values are added to the voter’s record and will be
later used on election day.
 Once the new record is ready for insertion, it is immedi-
ately cryptographically hashed (with the rest of the entire
voter database), the hash is encrypted, and then the hash and
the record are inserted into the database. To complete the
record’s creation, a signed, time-stamped printout of the rele-
vant information is made to record the voter’s registration,
and the record is transmitted to a centralized state-wide
location (complies with HAVA’s requirement for a central-
ized database of all registered voters). Immediately after
registering, the voter is encouraged to write down his chosen
password for future reference. Later, any voter can check his
status by going to a state website as can be commonly done
today. This procedure detects dishonest county registrars who
discard the registrations of selected voters.
 Because a voter’s registration information may change
(e.g., people may move or die), database modifications will
be necessary. To keep the integrity of the already computed
hashes, the database records are never modified in place.
Instead, when a voter record is modified or deleted, a signed
record describing the change is appended. In this way, we

Voter ID: 31415926
Precinct: 4072
Name: Mary Hatch
Address: 323 Sycamore, NY, NY
Party: Independent

Encrypted with precinct key 4072 ()

Encrypted with county public key ()

hash (passwd) || confounder

Si2Si1

hash (record || database)

hash (Si1||Si2)

Fig. 2. A voter registration record

6

can have an audit log of all modifications to the database.
Using this registration design, we have distributed the trust
among local and state participants, and we have created an
audit trail of the registration process. To check added and
deleted voters, we suggest using random audits of database
records to catch attacks that would register nonexistent or
ineligible voters.
 This design is open to new attacks. A dishonest registrar
could compromise the machine, and record secret informa-
tion (the secret values, Si1 and Si2). To protect against the
revealing of Si1 and Si2, we could use the voter-supplied
device (or the county-supplied device) to contribute to Si1 and
Si2, but the voter would then have to be able to check if his
contributions were used in Si’s generation. For simplicity, we
use the design described, and note that an adversary has little
power without the voter password, which even the registrar
does not have.

Step 3: Proof of Registration Mailed to the Voters. A few
weeks before election day, the county sends to each voter by
snail mail a sample ballot and booklet with the candidates’
statements, information about ballot initiatives, etc. Many
states already do this. However, now, included in the packet
is a single-use difficult-to-forge card (e.g., printed on security
paper, containing a chip, etc.) that serves as proof of citi-
zenship, residence, and registration, so that those issues need
not come up at voting time (because you cannot register
without meeting the legal requirements). The card is free, just
like the sample ballot, so as not to put a burden on poorer
voters. The card will cost the states money, but revenue not
spent on registration difficulties can help cover the card
expense.
 In addition, and most important, the card also contains the
Si1 generated and recorded at registration time It could be
printed on the card as characters, printed on the card as a bar
code, put on a chip etc. (Si2 is encrypted and electronically
recorded in the database but is not on the card). The card also
contains the address of the polling place, the hours it is open,
and a reminder to bring your password. The voter will use
this card for authentication to a poll worker on election day
(Step 6).
 The registration mailing has some different attack vectors.
Someone could intercept Si1, but this should not be a problem
(the voter password that will be required later in the voting
process is still unknown). Denial-of-service attacks are still a
problem. For example, someone could purposefully (or
accidentally) fail to mail out some of the cards, or they could
mail out the incorrect Si1. These attacks would be more diffi-
cult if it were possible to require multiple people to mail reg-
istration cards together (forcing collusion for a successful
attack), but having multiple mailing participants may not al-
ways be practical. Like current systems, we do not anticipate
large-scale problems with the delivery via mail.

Step 4: Voting Machines are Prepared. For each voting
machine in precinct i, a file is prepared containing the list of
all voters in that precinct (This is why a short plaintext
header is needed before each encrypted record). Each ma-
chine in the precinct gets the same list so a voter can pick any
voting machine and it will have the necessary information. If
a voter goes to the wrong precinct, he will have to cast a
provisional (paper) ballot since the voting machines there
will not have the required record.
 Election officials will use the state-wide list of registered
voters to build new lists of registered voters for each precinct.
This list contains the set of all (encrypted) voter records for
that precinct, but a different integrity field will be used in
each record for the shorter list (each record’s integrity value
in the state-wide list is calculated using all the records before
it). Because the precinct list is a subset of the entire statewide
list, its creation should be done by a group of trustees to
protect against precinct list attacks.
 After voter registration has ended, the entire precinct list
is stored on a read-only medium (e.g., a CD-ROM) that will
be used to boot the voting machines in the precinct. The point
of encrypting the entire voter file is to prevent anyone from
tampering with it while it is in storage prior to the election or
in transit to its precinct. A second CD-ROM is also prepared
for the poll workers’ machines at each precinct. This CD-
ROM contains the file containing each voter’s ID, name,
address, and Si2 value (verified by the voting machine to
make sure a voter has been properly authenticated). This file,
prepared by the registrar, is also encrypted using the
precinct’s public key to prevent tampering in storage or
transit.

Step 5: Key Assembly at Each Precinct. Well ahead of the
election, the EK and platform certificate for each voting
machine and the public key of the precinct are posted on the
county’s website. Just before each precinct opens on election
day, say at 5:30 A.M. for a 6 A.M. opening, the head poll
worker shows up with the county’s half of the precinct’s
private key. He gets it (on a smart card) from the county reg-
istrar, who unlocks the safe the day before the election.
Similarly, a sheriff’s deputy brings the other half at 5:30
A.M. as well. If political parties have fractions of the private
key, they also come at this time. Legal sanctions should be in
place to encourage showing up on time (to prevent denial of
service attacks by shutting down the polling place). This
practice is similar to current distribution methods where
officials hand-deliver and load ballot information onto the
voting machines just before voting begins [20].
 Before being booted, the electronic voting machines are
inspected for signs of tampering. Alternatively, the machines
could be vetted back at headquarters the day before and
hermetically sealed in a tamper-evident way. The machines
(which have no hard disks) are now booted from the
precinct’s CD-ROM.

7

 Once the voting software has been loaded, the poll worker
uses a PDA to perform attestation, as described above (For
additional security we could verify the machine with multiple
devices). As usual, the verified software disables interrupts
and DMA so unverified software never gains control.
Without a network, the attested code will continue execution
without interference.
 After the poll worker verifies the machine’s integrity, the
smart cards with the precinct’s private key parts are succes-
sively inserted to assemble the final precinct key to decrypt
the passwords and Si2 on the CD-ROM. The precinct key
assembly can take place outside of the TPM, because all code
on the machine has now been verified. Since the full precinct
key was not available in one place until this moment, no one
could have meaningfully changed the encrypted values in the
voter files during their transport or storage. The last step in
getting the precinct ready is verification of the poll workers’
machines (done in the same manner as the voting machines).
After this step, the precinct is ready to accept voters.

Step 6: Voters Show up and Check in. When the doors
open, the first voter approaches a poll worker and hands over
the card he was mailed. (In the absence of the card, a paper
provisional ballot has to be used.) The poll worker enters the
voter’s ID in a computer, thus bringing up the voter’s (now
decrypted) record. The poll worker checks if the name and
address on the screen match the card. For additional security,
a digital photo of the voter taken at registration time could be
included in the computer record and/or printed on the card.
(A stolen card is worthless without the password.). The poll
worker then asks the voter if he remembers the password
entered at registration time. If not, the voter is given a paper
provisional ballot. Once such a system is introduced, people
will be constantly reminded to choose passwords easy
enough for them to remember, like the full name of their
favorite cousin.
 Then the poll worker uses a bar code reader to enter Si1
from the card. The computer then concatenates the Si1 value
with its stored Si2 value to get Si = Si1 || Si2. It then creates a
voting token (a contactful smart card) containing the voter’s
ID number, VIDi, and Si. After the token’s generation, the
computer re-encrypts the voter’s record. The voter is handed
the voting token, as shown in Fig, 3, and told to go to any
voting machine and follow the on-screen directions.

Step 7: Voters Cast Their Votes. Before starting to vote, the
voter may want to verify that the voting machine is indeed
running the open source software published on the county

registrar’s website. Anyone can do precisely the same thing
the poll worker did first thing in the morning: use a portable
electronic device to send a challenge to the voting machine
over the serial cable and check the response to see if the
signed checksum of the software is correct and has a valid
signature (A technically challenged voter could bring a tech-
savvy friend to verify the machine for him or her). Since
some voters will not wish to take part in machine
verification, the user interface should make it easy to bypass
this step if desired, to allow the voter to immediately begin
the voting process.
 Attestation’s benefits are the protection of voter privacy
(successful attestation under our assumptions can show that
the voting machine software did not record voter informa-
tion) and making it more difficult to compromise a voting
machine. Because the source code is public, a voter can now
have more confidence that the machine is functioning
correctly. In the past simple software modifications could
have violated voter privacy or mis-recorded votes. Now, an
attacker must violate one of our attestation assumptions to
run malicious code on an attested voting machine. If veri-
fication succeeds while violating our attestation assumptions,
election integrity is not compromised, because the voting
machine will issue human-verifiable paper ballots that can be
easily checked by the voter.
 The on-screen directions tell the voter to swipe the voting
token with the reader as shown in Fig. 3. The computer then
looks up the voter record for VIDi, computes hash (Si1 || Si2) ,
and compares it to the value stored in the record. A match
means two things. First, the voter got the card at home
(assuming no one intercepted Si1 from the registrar to the post
office to the voter), thus at least has access to the mailbox at
the address given at registration time (to get Si1). Second, that
the poll worker authenticated the voter and gave Si2 (i.e.,
voter did not just sneak in the back door).
 Next, the voter is asked to enter his password. The hashed
password value is compared to the stored hashed value in the
voter’s record. If they match, the voter is approved and may
vote. If they do not match, the voter can try again up to k
times before being locked out. In addition to Si1 and Si2
(something you have), the password (something you know) is
the second line of defense. Without all three values (Si1, Si2,
and the password), no one can vote electronically and must
use a provisional ballot. This is the only part of the voting
system that requires a change in the voting process, but a
password that the voter may write down should not pose a
large difficulty.
 Now the voter is presented with the various races

Name, Address

Voter id, Si1

Voter Registration Card

Voter Poll worker
(checks Si1; gives Si2)

Voting Machine

Voter
goes to
precinct

photo

Voter

Voter is
ready to
vote

Voting Token

VIDi, Si = Si1 || Si2

Voter
(gives Si1) (swipes token) (checks token and password)

Fig. 3. The voter turns in the card mailed to him for a voting token and then uses the token to vote.

8

(President, Governor, etc.) one at a time and is given the op-
portunity to select a candidate for each one. Here is where the
multilingual, large font, audio, and other capabilities of the
machine shine. At the end, the machine displays a screen
showing all the choices and asks if they are correct. If not, the
voter can make changes, thus avoiding all the problems seen
in the 2008 Minnesota Senate election [41]. If the voter
confirms that the choices are correctly recorded, the vote is
signed with an auto-generated signing key, encrypted with
the precinct public key, and recorded on the storage medium
(e.g., CD-ROM or flash memory), and the smart card is
overwritten to prevent reuse. There should be a table with
initially blank vote slots on the recording medium and one
chosen at random (using random numbers from the TPM) to
prevent officials from determining after the election how the
kth voter voted by examining slot k on the output medium. If
a CD-ROM is used, this might require reprogramming the
firmware slightly.
 A subtle attack exists at this point. Unlike most voting
systems, the poll workers are not fully trusted in this design.
If a poll worker were to create n identical smart cards (e.g.,
containing his own information), then the poll worker could
use each card to cast a vote during election day. Our defense
is simple. The voting machine will also record (to a random
location) a hash of the voter’s secret, Si. By having each
voting machine check this hash before casting a vote, this
limits someone to casting v votes for v different voting
machines. Operational procedures that prohibit people from
carrying more than one smartcard around after the polls open
can also help deter this type of attack. In any case, we view
this attack to be unlikely. The attacker has several con-
straints: a poll worker must help (or be the attacker), the
votes can only be cast on election day, and the attack must
happen while the polling place is open.
 To finalize the vote, the machine prints a signed human-
verifiable paper ballot for each race. Having a ballot per race
protects against an attacker asking a voter to fill out an entire
ballot in a specific manner and later show this ballot to the
attacker. Most currently deployed voting machines use cheap
printers that sometimes jam; we assume that better quality
printers are in use (as on ATMs). The voter is instructed to
verify the ballot and put it in the ballot box under the watch-
ful gaze of the poll workers. In the event of a disputed elec-
tion, the paper ballots are optically scanned or counted by
hand. These are the real votes. The machine totals are just
preliminary tallies to give people a rough score just after the
polls close. With signed paper ballots, a machine cannot un-
detectably change the election results.
 In addition, the machine uses a TPM-generated random
number to print out a separate piece of paper for each race
with the precinct ID and a random value (unique across all
the votes in the precinct), the political office, and a URL on
it. Ideally, a poll worker physically stamps the paper (a valid
receipt must have a stamp and be signed with a key from a

machine in the specific precinct) and the voter is told to take
this piece of paper home. However, stamping each piece of
paper may not be feasible, and the digital signature should
suffice (This assumes hiding a small cryptographic key is
easier than stopping robbers of the stamp). The random
number is recorded along with the vote.

Step 8: Tabulating the Votes. When the last voter has voted
and the doors locked, the head poll worker goes to each
machine in turn and enters a secret code to end the election.
The machine then signs the stored votes to mark them as
complete and also prints out a ticket with the results, all in
the presence of citizen and political party observers. When all
the votes have been collected, the recording media are put
into a briefcase and locked. The ballot box and briefcase are
now securely escorted to headquarters. The head poll worker
calls up the county on the phone to report the preliminary
results. It is not done electronically because that opens up too
many new attack scenarios.

Step 9: Publishing the Result. As soon as is practical after
the vote-bearing storage media arrive at the county registrar
(in the presence of the parties and citizen observers), they are
read in on a computer whose open-source software has gone
through our verification process. As a check, the process
could be repeated on several computers, possibly supplied by
different (political) parties, and combined with randomized
manual recounts of a small percentage of the ballots. At this
point the county will have a list of {random number,
political-office, vote} tuples for each cast vote.
 Many paper-based schemes have been proposed to allow
the voter to check the integrity of the election without being
able to sell a vote [7, 8, 14, 35]. These verification designs
are clever in their allowing the voter to verify their vote while
keeping their vote secret. However, voters and legislators will
have significant trouble understanding how verification
works and knowing their vote is actually counted. This com-
plexity precludes system adoption. Aside from verification
complexity, receipts pose additional difficulties. Although a
voter may trust his verifiable receipt, an attacker can still
compromise an election in a way that does not break
verification. Although voters may have a verifiable receipt,
verification presents a new capability for an attacker: forging
bogus receipts to try to get the election thrown out. Based on
these issues, we present a simple and transparent verification
scheme that should be understandable to most voters and
politicians.
 In our verification design, the county officials can post the
entire list of voting tuples onto its website. This protects
election integrity by allowing every voter to verify his or her
own vote. If county officials cheat and modify 1% of the
votes and 1000 voters check their votes, the probability of
undetected cheating is then 0.991000 ≈ 0.004%. While this
scheme preserves the voter’s privacy (since only the voter

9

has the random number printed after voting), voter coercion
may become a concern (although still easily done with absen-
tee ballots). To combat voter coercion, voters can switch their
receipt with someone from a different party and later show
the “required” vote (similar to Rivest and Smith [38]).
Receipt swapping can be done with either a trusted friend or
perhaps through a receipt-swapping website. Because a swap
may involve a bogus receipt, both participants should verify
signed receipts themselves or use a friend to verify receipts
for them. Unlike floating receipts where voters must check
someone else’s vote [38], voters maintain the ability to check
their own votes. We believe voters will have some motivation
to check if their own votes were recorded but very little
motivation to check on the vote of some random unknown
person.
 Our human-readable receipt solution does not solve the
problem where challenges to results can erode voter confi-
dence. Performing a recount on a single challenge would be
expensive, but ignoring a percentage of them could hurt the
public’s trust of the voting process. If receipts are provided in
an election, a policy that balances the voters’ trust and the ex-
pense of a recount should be established and followed.
 A benefit of our design is that people will easily under-
stand the one-to-one mapping of their number (or detailed
vote information) to the site. To get a scheme accepted, it is
essential that politicians and voters be able to understand it.
With this simple design, voters are motivated to check their
receipt. If a valid receipt’s vote is displayed, they can assume
their vote was counted.

4. Discussion
 This voting system allows anyone, in a simple way, to
verify the final tally (sum the votes at the receipt’s URI)
while providing each voter a way to verify that his own vote
was cast for his own candidate. The voter registration
changes of using a password and establishing a secret that
will be used on election day helps protect the voter’s vote. No
one can cast a vote without the necessary voting token and
password. Election integrity is preserved by voters looking
up their own votes on the election website. The cost of this
simplified voting scheme is that vote selling is now possible
with both electronic receipts and the much simpler absentee
ballot route. As absentee ballots become more common [28],
making the in-person voting system more complicated in
order to prevent something that can be easily circumvented
with an absentee ballot is a poor tradeoff.
 Part of the challenge of voter authentication is our use of
passwords. In our system, passwords defend against attacks
where someone (e.g., a poll worker) records votes for regis-
tered voters that do not show up at the polling place and have
not voted absentee. There is no way for the poll worker to
vote without knowing (or guessing) the password. The voter
is already required to have something to vote (Si), but the
password makes the voter know a secret established at

registration. However, drawbacks exist such as voters for-
getting passwords that will increase the number of provi-
sional ballots used (we initially expect this). If no voting au-
thentication mechanism is in place, poll workers can change
election outcomes simply by voting in the place of registered
voters that do not show up at the polling place (assuming the
poll workers are able to get Si1). Using passwords helps
thwart these damaging attacks. Other voting schemes are
vulnerable to these attacks.
 Related to the problem of verification is the trust required
for inserting keys into a machine. Using a cryptographic key
in a voting machine will require trusting the hardware. Our
solution uses a TPM for its hardware protection. If the TPM’s
endorsement key (EK) were revealed by a malicious hard-
ware manufacturer, this would undermine the election integ-
rity. However, this compromise requires a change in the man-
ufacturing process (we assume that the EK is generated in-
side the TPM). For the precinct keys, our main defense is
splitting keys after their generation and not rejoining the keys
until election day. One must break the machine’s hardware
protection to retrieve the key after its machine insertion.
 One of our main goals was simplicity in the voting
system. Accordingly, the only additional burden on the voter
is the requirement of using a password, a concept most voters
are already familiar with in other contexts (voter passcodes
have been used in a recent election in Hawaii [18]). Although
attestation is unusual, it is conceptually simple (“Is the right
software running on the machine?”) and is optional. Furth-
ermore, to make attestation practical and simple, voters can
use easy-to-use smart phone software to download the
necessary data from a website they trust. The software can do
all of the checking and warn the voter if anything is amiss.
 Issuing voter receipts is one area that also needs attention.
Receipts hold great promise, but they need to be carefully
tested before deployment. In our view, the main purpose of
the receipt is so the voter can see that his or her vote was
counted correctly. As a by-product, the integrity of the
election is strengthened as each voter verifies his own vote.
The main issue is in all the ways the verification process can
be abused. We believe reliable verification to be an open
problem. We have voting receipts in our system, but many
attacks, including forged receipts, remain. Someone could
make a fake receipt. Election officials may not know if a
machine malfunctioned, or if the voter is cheating. As a last
defense against forged receipts, a random paper trail audit
that identifies legitimate receipts (e.g., a receipt must share
the same ballot number as found on the paper trail) could
reveal possible malfeasance. We will investigate these issues
in future work.

5. Related Work
 Karlof et al. conducted a systems analysis [21] of
Chaum’s visual cryptography receipt scheme [6] and Neff’s
VoteHere [30] scheme. Although this work was primarily on

10

the system implementation of cryptographic voting protocols,
they showed many different areas of weaknesses in these vot-
ing systems including subliminal channels, social engineer-
ing, denial of service, and other human factors. Our work al-
so concentrates on the systems aspects of a voting system,
but our voting system provides election integrity using sim-
pler methods.
 Some of the main functionality of an electronic voting
system may be entrusted to a machine including printing a
ballot, validating a ballot, and storing cryptographic keys. To
protect against machine threats, other types of voting systems
advocate the use of trusted hardware [10, 21, 39], and some
suggest verification of software integrity [13]. Because a
trusted platform module (TPM) is a hardware device that can
be used to store secrets, we use this device in our voting
system to make an attack on voter privacy and forged ballots
more difficult than an attack on an unprotected machine.
 Our attestation approach is inspired by Kauer [22] who
first created an authenticated boot loader using skinit on an
x86 AMD processor. Because the hardware and software of a
voting machine is known, once we get a machine into a
known state, we can similarly verify a meaningful configu-
ration. Later work by McCune et al. discuss applications us-
ing the TPM to protect data (sealed storage) that can be
combined with the dynamic root of trust [27]. In our imple-
mentation, we plan to experiment with sealed storage to dis-
allow execution of the voting software unless machine-based
attestation is successful. Although some voters may still want
to attest the machine, this could provide additional assurance
about the machine’s configuration even when voters choose
not to attest.
 The OVC voting system [23] is similar to our work in its
use of open-source code, but there are many differences. In
the OVC system, the voter has the option to verify the ballot
by using another verification machine in the polling station.
Unfortunately, there is no possibility for a voter to verify his
vote actually counted. This system is incompatible with our
goal of protecting election integrity and allowing individual
voter verification.

6. Conclusion
 The procedures and techniques described above using
open-source software and shared keys provide a basis for
elections that people can have confidence in and which are
much harder to tamper with. In particular, the entire system
has to be made secure, starting at the top of the election
chain. From election key generation to the final count, re-
dundant safeguards are built in at various places to prevent
tampering at various places in the process.
 By addressing the lessons of past elections with a more
auditable registration system and better voter ID cards, elec-
tion integrity is bolstered. The fully audited registration pro-
cess helps record each voter’s registration. For election day
authentication, voters have a relatively strong authentication

token (Si1 on a voter ID card). When the voter goes to vote,
they now have (Si2) and know (a password) secrets that no
one else has in order to vote. After the voter has voted, the
voter can use their human-readable verification receipt to
confirm their vote was included in the final tally, and statisti-
cal paper-based audits provide an additional defense of the
reported result’s integrity.
 Protections that preserve election integrity should help
guide designers of voting systems in avoiding potential at-
tacks. We mitigate several attacks with our use of open-
source code, through open and public design of the election
procedures, and by hardware protection for cryptographic
keys. By using these mechanisms to defend election integrity,
a system like this may begin to approach a situation in which
electronic voting systems can begin to be trusted.
Acknowledgement. We thank Thomas Quillinan, Martijn
Warnier, Jeff Napper, Srijith K. Nair, and the anonymous
reviewers for their valuable comments.

7. References

[1] AMD64 Architecture Programmer’s Manual. Volume 2: System

Programming. AMD Corp., Sept. 2007.

[2] A. Aviv, et al. Security Evaluation of ES&S Voting Machines and

Election Management System. In Proceedings of the 2008
USENIX/ACCURATE Electronic Voting Technology Workshop, Jul.
2008.

[3] J. Benaloh. Administrative and Public Verifiability: Can We Have

Both? In Proceedings of the 2008 USENIX/ACCURATE
Electronic Voting Technology Workshop, Jul. 2008.

[4] D. Bowen. Secretary of State Debra Bowen Moves to Strengthen

Voter Confidence in Election Security Following Top-to-Bottom
Review of Voting Systems. Press Release. Aug. 3, 2007.

[5] K. Butler, et al. Systemic Issues in the Hart InterCivic and Premier

Voting Systems: Reflections on Project EVEREST. In Proceedings
of the 2008 USENIX/ACCURATE Electronic Voting Technology
Workshop, Jul. 2008.

[6] D. Chaum. Secret-ballot Receipts: True Voter-verifiable Elections.

In IEEE Security & Privacy Magazine, 2(1):38—47, Jan.—Feb.
2004.

[7] D. Chaum and P. Ryan. A Practical, Voter-Verifiable Election

Scheme. In Proceedings of the 10th European Symposium on
Research in Computer Security. Sept. 2005.

[8] D. Chaum, et al. Scantegrity II: End-to-End Verifiability for Optical

Scan Eleection Systems using Invisible Ink Confirmation Codes. In
Proceedings of the 2008 USENIX/ACCURATE Electronic Voting
Technology Workshop, Jul. 2008.

[9] H. Clark. Democratic Primary: Voter Lists Called into Question.

Santa Fe New Mexican, Feb. 25, 2008.

[10] M. Clarkson, S. Chong, A. Myers. Civitas: Toward a Secure

Voting System. In Proceedings of the 28th IEEE Symposium on
Security and Privacy, May 2008.

11

[11] M. Doig. Analysis Points to Bad Ballot Design. Herald Tribune.
Dec. 5, 2006.

[12] A Master List of 70+ Voting Machine Failures and Miscounts by

State. http://www.commoncause.org/VotingMachine-

FailuresMasterList.

[13] A. Feldman, J. Halderman, and E. Felten. Security Analysis of the

Diebold Accuvote-TS Voting Machine. In Proceedings of the 2007
USENIX/ACCURATE Electronic Voting Technology Workshop,
Aug. 2007.

[14] K. Fisher, R. Carback, and A. Sherman. Punchscan: Introduction

and System Definition. In Proceedings of the 2006 Workshop on
Trustworthy Elections (WOTE), Jun. 2006.

 [15] L. Gong, M. Lomas, R. Needham, and J. Saltzer. Protecting Poorly

Chosen Secrets from Guessing Attacks. In IEEE Journal on
Selected Areas in Communications, 11(5):648-656, June 1993.

 [16] R. Gonggrijp and W. Hengeveld. Stichting “Wij vertrouwen

stemcomputers niet.” In Proceedings of the 2007
USENIX/ACCURATE Electronic Voting Technology Workshop,
Aug. 2007.

[17] J. Hall. Transparency and Access to Source Code in Electronic

Voting. In Proceedings of the 2006 USENIX/ACCURATE
Electronic Voting Technology Workshop, Aug. 2006.

[18] Honolulu Hosts Nation’s First All-Digital Election. Associated

Press. May 24, 2009.

[19] Intel 64 and IA-32 Architectures Software Developer’s Manual

Volume 2B: Instruction Set Ref., N-Z. March 2009.

[20] D. Jones. Misassessment of Security in Computer-Based Election

Systems. In RSA Lab
Cryptobytes, 7, 2 (Fall 2004) 9-13.
http://www.rsasecurity.com/rsalabs/cryptobytes/Crypto

Bytes_Fall2004.pdf.

[21] C. Karlof, N. Sastry, and D. Wagner. Cryptographic Voting

Protocols: A Systems Perspective. In the 14th USENIX Security
Symposium, August 2005.

[22] B. Kauer. OSLO: Improving the Security of Trusted Computing. In

Proceedings of the 16th USENIX Security Symposium, Aug. 2007.

[23] A. Keller, et al. A PC-Based Open-Source Voting Machine with an

Accesssible Voter-Verifiable Paper Ballot. In Proceedings of the
2005 Free and Open Source Software (FREENIX) Annual
Technical Conference, Aug. 2007.

[24] A. Kiayias, et al. Tampering with Special Purpose Computing

Devices: A Case Study in Optical Scan E-Voting. In Proceedings of
the 23rd Annual Computer Security Applications Conference
(ACSAC), Dec. 2007.

[25] T. Kohno, A. Stubblefield, A. Rubin, D. Wallach. Analysis of an

Electronic Voting System. In the Proceedings of the 25th IEEE
Symposium on Security and Privacy, May 2004.

[26] S. Majors. Voting Machine Maker Discloses Program Error.

Associated Press, Aug. 21, 2008.

[27] J. McCune, B. Parno, A. Perrig, M. Reiter, and H. Isozaki. Flicker:
An Execution Infrastructure for TCB Minimization. In Proceedings
of the ACM European Conference on Computer Systems
(EUROSYS), Apr. 2008.

[28] M. McDonald. (Nearly) Final 2008 Early Voting Statistics. Jan. 11,

2009. http://elections.gmu.edu/Early_Vo-

ting_2008_Final.html.

[29] L. Minnite. An Analysis of Voter Fraud in the United States.

Demos. Nov. 19, 2007.

[30] C. Neff. Practical High Certainty Intent Verification for Encrypted

Votes. http://www.votehere.net/old/vhti/-

documentation/vsv-2.0.3638.pdf.

[31] L. Norden and J. Allen. Final Report 2008-2009 Ohio Election

Summit and Conference. Apr. 8, 2009.
http://www.brennancenter.org/page/-
/publications/Ohio.Final.Report.pdf.

[32] N. Paul and A. Tanenbaum. Trustworthy Voting: From Machine to

System. IEEE Computer, pp. 23-29, May 2009.

[33] R. Pierre. Botched Name Purge Denied Some the Right to Vote.

The Washington Post, May 31, 2001.

[34] W. Pieters. La Volonté Machinale. PhD Thesis. Radboud

Universiteit Nijmegen, 2007.

[35] S. Popoveniuc and B. Hosp. An Introduction to Punchscan. In

Proceedings of the 2006 Workshop on Trustworthy Elections
(WOTE), Jun. 2006.

[36] E. Proebstel, et al. An Analysis of the Hart Intercivic DAU eSlate.

In Proceedings of the 2007 USENIX/ACCURATE Electronic Voting
Technology Workshop, Aug. 2007.

[37] R. Rivest and J. Wack. On the Notion of “Software Independence”

in Voting Systems. Draft version, July 28, 2006.
http://vote.nist.gov/SI-in-voting.pdf.

[38] R. Rivest and W. Smith. Three Voting Protocols: ThreeBallot,

VAV, and Twin. In Proceedings of the 2007 USENIX/ACCURATE
Electronic Voting Technology Workshop, Aug. 2007.

[39] D. Sandler and D. Wallach. Casting Votes in the Auditorium. In

Proceedings of the 2007 USENIX/ACCURATE Electronic Voting
Technology Workshop, Aug. 2007.

[40] C. Thompson. Can You Count on Voting Machines? New York

Times, Jan. 6, 2008.

[41] T. Bibbetts and S. Mullis. Challenged Ballots: You be the Judge –

Round 1. Dec. 1, 2008.
http://minnesota.publicradio.org/features/2008/11/19_c
hallenged_ballots/round1/.

[42] I. Urbina. States’ Actions to Block Voters Appear Illegal. New York

Times, Oct. 8, 2008.

[43] A. Yasinsac, et al. Software Review and Security Analysis of the

ES&S iVotronic 8.0.1.2 Voting Machine Firmware. Feb. 2007.
http://www.cs.berkeley.edu/~daw/papers/-
sarasota07.pdf.

